The equation solvability problem over supernilpotent algebras with Mal’cev term

2018 ◽  
Vol 28 (06) ◽  
pp. 1005-1015 ◽  
Author(s):  
Michael Kompatscher

In 2011, Horváth gave a new proof that the equation solvability problem over finite nilpotent groups and rings is in P. In the same paper, he asked whether his proof can be lifted to nilpotent algebras in general. We show that this is in fact possible for supernilpotent algebras with a Mal’cev term. However, we also describe a class of nilpotent, but not supernilpotent algebras with Mal’cev term that have co-NP-complete identity checking problems and NP-complete equation solvability problems. This proves that the answer to Horváth’s question is negative in general (assuming P[Formula: see text]NP).

2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Gabor Horvath ◽  
Csaba Szabo

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience We prove that the extended equivalence problem is solvable in polynomial time for finite nilpotent groups, and coNP-complete, otherwise. We prove that the extended equation solvability problem is solvable in polynomial time for finite nilpotent groups, and NP-complete, otherwise.


2017 ◽  
Vol 27 (02) ◽  
pp. 259-272 ◽  
Author(s):  
Attila Földvári

The complexity of the equation solvability problem is known for nilpotent groups, for not solvable groups and for some semidirect products of Abelian groups. We provide a new polynomial time algorithm for deciding the equation solvability problem over certain semidirect products, where the first factor is not necessarily Abelian. Our main idea is to represent such groups as matrix groups, and reduce the original problem to equation solvability over the underlying field. Further, we apply this new method to give a much more efficient algorithm for equation solvability over nilpotent rings than previously existed.


2019 ◽  
Vol 30 (03) ◽  
pp. 607-623
Author(s):  
Attila Földvári ◽  
Gábor Horváth

We provide a polynomial time algorithm for deciding the equation solvability problem over finite groups that are semidirect products of a [Formula: see text]-group and an Abelian group. As a consequence, we obtain a polynomial time algorithm for deciding the equivalence problem over semidirect products of a finite nilpotent group and a finite Abelian group. The key ingredient of the proof is to represent group expressions using a special polycyclic presentation of these finite solvable groups.


2008 ◽  
Vol 47 (1) ◽  
pp. 250-258 ◽  
Author(s):  
O. Kharlampovich ◽  
I. G. Lysënok ◽  
A. G. Myasnikov ◽  
N. W. M. Touikan

2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2020 ◽  
Vol 23 (4) ◽  
pp. 641-658
Author(s):  
Gunnar Traustason ◽  
James Williams

AbstractIn this paper, we continue the study of powerfully nilpotent groups. These are powerful p-groups possessing a central series of a special kind. To each such group, one can attach a powerful nilpotency class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. In this paper, we will give a full classification of powerfully nilpotent groups of rank 2. The classification will then be used to arrive at a precise formula for the number of powerfully nilpotent groups of rank 2 and order {p^{n}}. We will also give a detailed analysis of the ancestry tree for these groups. The second part of the paper is then devoted to a full classification of powerfully nilpotent groups of order up to {p^{6}}.


Sign in / Sign up

Export Citation Format

Share Document