The complexity of the equation solvability and equivalence problems over finite groups

2019 ◽  
Vol 30 (03) ◽  
pp. 607-623
Author(s):  
Attila Földvári ◽  
Gábor Horváth

We provide a polynomial time algorithm for deciding the equation solvability problem over finite groups that are semidirect products of a [Formula: see text]-group and an Abelian group. As a consequence, we obtain a polynomial time algorithm for deciding the equivalence problem over semidirect products of a finite nilpotent group and a finite Abelian group. The key ingredient of the proof is to represent group expressions using a special polycyclic presentation of these finite solvable groups.

2017 ◽  
Vol 27 (02) ◽  
pp. 259-272 ◽  
Author(s):  
Attila Földvári

The complexity of the equation solvability problem is known for nilpotent groups, for not solvable groups and for some semidirect products of Abelian groups. We provide a new polynomial time algorithm for deciding the equation solvability problem over certain semidirect products, where the first factor is not necessarily Abelian. Our main idea is to represent such groups as matrix groups, and reduce the original problem to equation solvability over the underlying field. Further, we apply this new method to give a much more efficient algorithm for equation solvability over nilpotent rings than previously existed.


2000 ◽  
Vol 3 ◽  
pp. 96-116 ◽  
Author(s):  
Catherine Greenhill

AbstractThe exterior square of a multiset is a natural combinatorial construction which is related to the exterior square of a vector space. We consider multisets of elements of an abelian group. Two properties are defined which a multiset may satisfy: recognisability and involution-recognisability. A polynomial-time algorithm is described which takes an input multiset and returns either (a) a multiset which is either recognisable or involution-recognisable and whose exterior square equals the input multiset, or (b) the message that no such multiset exists. The proportion of multisets which are neither recognisable nor involution-recognisable is shown to be small when the abelian group is finite but large. Some further comments are made about the motivating case of multisets of eigenvalues of matrices.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Gabor Horvath ◽  
Csaba Szabo

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience We prove that the extended equivalence problem is solvable in polynomial time for finite nilpotent groups, and coNP-complete, otherwise. We prove that the extended equation solvability problem is solvable in polynomial time for finite nilpotent groups, and NP-complete, otherwise.


2004 ◽  
Vol 7 ◽  
pp. 73-100
Author(s):  
Peter M. Neumann ◽  
Cheryl E. Praeger

AbstractA k-multiset is an unordered k-tuple, perhaps with repetitions. If x is an r-multiset {x1, …, xr} and y is an s-multiset {y1, …, ys} with elements from an abelian group A the tensor product x ⊗ y is defined as the rs-multiset {xi yj | 1 ≤ i ≤ r, 1 ≤ j ≤ s}. The main focus of this paper is a polynomial-time algorithm to discover whether a given rs-multiset from A can be factorised. The algorithm is not guaranteed to succeed, but there is an acceptably small upper bound for the probability of failure. The paper also contains a description of the context of this factorisation problem, and the beginnings of an attack on the following division-problem: is a given rs-multiset divisible by a given r-multiset, and if so, how can division be achieved in polynomially bounded time?


10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Sign in / Sign up

Export Citation Format

Share Document