scholarly journals Non-cooperative Fisher–KPP systems: Asymptotic behavior of traveling waves

2018 ◽  
Vol 28 (06) ◽  
pp. 1067-1104 ◽  
Author(s):  
Léo Girardin

This paper is concerned with non-cooperative parabolic reaction–diffusion systems which share structural similarities with the scalar Fisher–KPP equation. In a previous paper, we established that these systems admit traveling wave solutions whose profiles connect the null state to a compact subset of the positive cone. The main object of this paper is the investigation of a more precise description of these profiles. Non-cooperative KPP systems can model various phenomena where the following three mechanisms occur: local diffusion in space, linear cooperation and superlinear competition.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Tianran Zhang ◽  
Qingming Gou

Based on Codeço’s cholera model (2001), an epidemic cholera model that incorporates the pathogen diffusion and disease-related death is proposed. The formula for minimal wave speedc∗is given. To prove the existence of traveling wave solutions, an invariant cone is constructed by upper and lower solutions and Schauder’s fixed point theorem is applied. The nonexistence of traveling wave solutions is proved by two-sided Laplace transform. However, to apply two-sided Laplace transform, the prior estimate of exponential decrease of traveling wave solutions is needed. For this aim, a new method is proposed, which can be applied to reaction-diffusion systems consisting of more than three equations.


2016 ◽  
Vol 19 (5) ◽  
pp. 1461-1472 ◽  
Author(s):  
Yuanwei Qi ◽  
Yi Zhu

AbstractThis article studies propagating traveling waves in a class of reaction-diffusion systems which model isothermal autocatalytic chemical reactions as well as microbial growth and competition in a flow reactor. In the context of isothermal autocatalytic systems, two different cases will be studied. The first is autocatalytic chemical reaction of order m without decay. The second is chemical reaction of order m with a decay of order n, where m and n are positive integers and m>n≥1. A typical system in autocatalysis is A+2B→3B and B→C involving two chemical species, a reactant A and an auto-catalyst B and C an inert chemical species.The numerical computation gives more accurate estimates on minimum speed of traveling waves for autocatalytic reaction without decay, providing useful insight in the study of stability of traveling waves.For autocatalytic reaction of order m = 2 with linear decay n = 1, which has a particular important role in chemical waves, it is shown numerically that there exist multiple traveling waves with 1, 2 and 3 peaks with certain choices of parameters.


Sign in / Sign up

Export Citation Format

Share Document