nonlocal reaction
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 33)

H-INDEX

17
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Nicholas Bessonov ◽  
Gennady Bocharov ◽  
Vitaly Volpert

The paper is devoted to a nonlocal reaction-diffusion equation describing the development of viral infection in tissue, taking into account virus distribution in the space of genotypes, the antiviral immune response, and natural genotype-dependent virus death. It is shown that infection propagates as a reaction-diffusion wave. In some particular cases, the 2D problem can be reduced to a 1D problem by separation of variables, allowing for proof of wave existence and stability. In general, this reduction provides an approximation of the 2D problem by a 1D problem. The analysis of the reduced problem allows us to determine how viral load and virulence depend on genotype distribution, the strength of the immune response, and the level of immunity.


Author(s):  
Martin Burger

AbstractThe aim of this paper is to study the derivation of appropriate meso- and macroscopic models for interactions as appearing in social processes. There are two main characteristics the models take into account, namely a network structure of interactions, which we treat by an appropriate mesoscopic description, and a different role of interacting agents. The latter differs from interactions treated in classical statistical mechanics in the sense that the agents do not have symmetric roles, but there is rather an active and a passive agent. We will demonstrate how a certain form of kinetic equations can be obtained to describe such interactions at a mesoscopic level and moreover obtain macroscopic models from monokinetics solutions of those. The derivation naturally leads to systems of nonlocal reaction-diffusion equations (or in a suitable limit local versions thereof), which can explain spatial phase separation phenomena found to emerge from the microscopic interactions. We will highlight the approach in three examples, namely the evolution and coarsening of dialects in human language, the construction of social norms, and the spread of an epidemic.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 351
Author(s):  
Malay Banerjee ◽  
Sergei V. Petrovskii ◽  
Vitaly Volpert

Dynamics of human populations can be affected by various socio-economic factors through their influence on the natality and mortality rates, and on the migration intensity and directions. In this work we study an economic–demographic model which takes into account the dependence of the wealth production rate on the available resources. In the case of nonlocal consumption of resources, the homogeneous-in-space wealth–population distribution is replaced by a periodic-in-space distribution for which the total wealth increases. For the global consumption of resources, if the wealth redistribution is small enough, then the homogeneous distribution is replaced by a heterogeneous one with a single wealth accumulation center. Thus, economic and demographic characteristics of nonlocal and global economies can be quite different in comparison with the local economy.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 353
Author(s):  
Rubén Caballero ◽  
Alexandre N. Carvalho ◽  
Pedro Marín-Rubio ◽  
José Valero

In this paper, we study the structure of the global attractor for the multivalued semiflow generated by a nonlocal reaction-diffusion equation in which we cannot guarantee the uniqueness of the Cauchy problem. First, we analyse the existence and properties of stationary points, showing that the problem undergoes the same cascade of bifurcations as in the Chafee-Infante equation. Second, we study the stability of the fixed points and establish that the semiflow is a dynamic gradient. We prove that the attractor consists of the stationary points and their heteroclinic connections and analyse some of the possible connections.


Sign in / Sign up

Export Citation Format

Share Document