APPLYING k-SEPARABILITY TO COLLABORATIVE RECOMMENDER SYSTEMS

2012 ◽  
Vol 21 (01) ◽  
pp. 1250001
Author(s):  
GEORGIOS ALEXANDRIDIS ◽  
GEORGIOS SIOLAS ◽  
ANDREAS STAFYLOPATIS

Most recommender systems have too many items to propose to too many users based on limited information. This problem is formally known as the sparsity of the ratings' matrix, because this is the structure that holds user preferences. This paper outlines a Collaborative Filtering Recommender System that tries to amend this situation. After applying Singular Value Decomposition to reduce the dimensionality of the data, our system makes use of a dynamic Artificial Neural Network architecture with boosted learning to predict user ratings. Furthermore we use the concept of k-separability to deal with the resulting noisy data, a methodology not yet tested in Recommender Systems. The combination of these techniques applied to the MovieLens datasets seems to yield promising results.

2021 ◽  
Author(s):  
Kirubahari R ◽  
Miruna Joe Amali S

Abstract Recommender Systems (RS) help the users by showing better products and relevant items efficiently based on their likings and historical interactions with other users and items. Collaborative filtering is one of the most powerful technique of recommender system and provides personalized recommendation for users by prediction rating approach. Many Recommender Systems generally model only based on user implicit feedback, though it is too challenging to build RS. Conventional Collaborative Filtering (CF) techniques such as matrix decomposition, which is a linear combination of user rating for an item with latent features of user preferences, but have limited learning capacity. Additionally, it has been suffering from data sparsity and cold start problem due to insufficient data. In order to overcome these problems, an integration of conventional collaborative filtering with deep neural networks is proposed. A Weighted Parallel Deep Hybrid Collaborative Filtering based on Singular Value Decomposition (SVD) and Restricted Boltzmann Machine (RBM) is proposed for significant improvement. In this approach a user-item relationship matrix with explicit ratings is constructed. The user - item matrix is integrated to Singular Value Decomposition (SVD) that decomposes the matrix into the best lower rank approximation of the original matrix. Secondly the user-item matrix is embedded into deep neural network model called Restricted Boltzmann Machine (RBM) for learning latent features of user- item matrix to predict user preferences. Thus, the Weighted Parallel Deep Hybrid RS uses additional attributes of user - item matrix to alleviate the cold start problem. The proposed method is verified using two different movie lens datasets namely, MovieLens 100K and MovieLens of 1M and evaluated using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results indicate better prediction compared to other techniques in terms of accuracy.


1995 ◽  
Vol 7 (6) ◽  
pp. 1191-1205 ◽  
Author(s):  
Colin Fyfe

A review is given of a new artificial neural network architecture in which the weights converge to the principal component subspace. The weights learn by only simple Hebbian learning yet require no clipping, normalization or weight decay. The net self-organizes using negative feedback of activation from a set of "interneurons" to the input neurons. By allowing this negative feedback from the interneurons to act on other interneurons we can introduce the necessary asymmetry to cause convergence to the actual principal components. Simulations and analysis confirm such convergence.


2021 ◽  
Author(s):  
Shalin Shah

Recommender systems aim to personalize the experience of user by suggesting items to the user based on the preferences of a user. The preferences are learned from the user’s interaction history or through explicit ratings that the user has given to the items. The system could be part of a retail website, an online bookstore, a movie rental service or an online education portal and so on. In this paper, I will focus on matrix factorization algorithms as applied to recommender systems and discuss the singular value decomposition, gradient descent-based matrix factorization and parallelizing matrix factorization for large scale applications.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2593-2599

Economic growth as measured by GDP growth rates and economic growth set as an increase in GDP strongly helps government predictions about the economic situation and the formation of economic development strategies. This measurement is done by combining mathematical and computer technology to make qualitative and quantitative predictions scientifically and appropriately for economic growth trends. It is a good practical sense to use scientific and proven methods to predict future GDP development trends of a particular economy. In some cases, machine learning methods have proven to be better forecasting results than statistical methods. A Deep Neural Network (DNN) is one type of ANN (Artificial Neural network) architecture based on deep MLP (Multi Layer Perceptron), which uses Deep Learning training techniques. This study proposes the use of DNN to predict the percentage of GDP distribution at current prices by industry sector. In this case, the DNN used will have multiple outputs as many industry sectors. The aim of this study is how to predict for the next period with the smallest possible prediction errors by using DNN.


2013 ◽  
Vol 475-476 ◽  
pp. 1084-1089
Author(s):  
Hui Yuan Chang ◽  
Ding Xia Li ◽  
Qi Dong Liu ◽  
Rong Jing Hu ◽  
Rui Sheng Zhang

Recommender systems are widely employed in many fields to recommend products, services and information to potential customers. As the most successful approach to recommender systems, collaborative filtering (CF) predicts user preferences in item selection based on the known user ratings of items. It can be divided into two main braches - the neighbourhood approach (NB) and latent factor models. Some of the most successful realizations of latent factor models are based on matrix factorization (MF). Accuracy is one of the most important measurement criteria for recommender systems. In this paper, to improve accuracy, we propose an improved MF model. In this model, we not only consider the latent factors describing the user and item, but also incorporate content information directly into MF.Experiments are performed on the Movielens dataset to compare the present approach with the other method. The experiment results indicate that the proposed approach can remarkably improve the recommendation quality.


Sign in / Sign up

Export Citation Format

Share Document