consumption prediction
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 259)

H-INDEX

21
(FIVE YEARS 10)

2022 ◽  
pp. 104024
Author(s):  
A. Pérez-Fargallo ◽  
D. Bienvenido-Huertas ◽  
S. Contreras-Espinoza ◽  
L. Marín-Restrepo

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bingqian Fan ◽  
Xuanxuan Xing

Building energy consumption prediction plays an important role in realizing building energy conservation control. Limited by some external factors such as temperature, there are some problems in practical applications, such as complex operation and low prediction accuracy. Aiming at the problem of low prediction accuracy caused by poor timing of existing building energy consumption prediction methods, a building energy consumption prediction and analysis method based on the deep learning network is proposed in this paper. Before establishing the energy consumption prediction model, the building energy consumption data source is preprocessed and analyzed. Then, based on the Keras deep learning framework, an improved long short-term memory (ILSTM) prediction model is built to support the accurate analysis of the whole cycle of the prediction network. At the same time, the adaptive moment (Adam) estimation algorithm is used to update and optimize the weight parameters of the model to realize the adaptive and rapid update and matching of network parameters. The simulation experiment is based on the actual dataset collected by a university in Southwest China. The experimental results show that the evaluation indexes MAE and RMSE of the proposed method are 0.015 and 0.109, respectively, which are better than the comparison method. The simulation experiment proves that the proposed method is feasible.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Tiago Yukio Fujii ◽  
Victor Takashi Hayashi ◽  
Reginaldo Arakaki ◽  
Wilson Vicente Ruggiero ◽  
Romeo Bulla ◽  
...  

Using extensive databases and known algorithms to predict short-term energy consumption comprises most computational solutions based on artificial intelligence today. State-of-the-art approaches validate their prediction models in offline environments that disregard automation, quality monitoring, and retraining challenges present in online scenarios. The existing demand response initiatives lack personalization, thus not engaging consumers. Obtaining specific and valuable recommendations is difficult for most digital platforms due to their solution pattern: extensive database, specialized algorithms, and using profiles with similar aspects. The challenges and present personalization tactics have been researched by adopting a digital twin model. This study creates a different approach by adding structural topology to build a new category of recommendation platform using the digital twin model with real-time data collected by IoT sensors to improve machine learning methods. A residential study case with 31 IoT smart meter and smart plug devices with 19-month data (measurements performed each second) validated Digital Twin MLOps architecture for personalized demand response suggestions based on online short-term energy consumption prediction.


Sign in / Sign up

Export Citation Format

Share Document