A Multi-Stage Krill Herd Algorithm for Global Numerical Optimization

2016 ◽  
Vol 25 (02) ◽  
pp. 1550030 ◽  
Author(s):  
Gai-Ge Wang ◽  
Amir H. Gandomi ◽  
Amir H. Alavi ◽  
Suash Deb

A multi-stage krill herd (MSKH) algorithm is presented to fully exploit the global and local search abilities of the standard krill herd (KH) optimization method. The proposed method involves exploration and exploitation stages. The exploration stage uses the basic KH algorithm to select a good candidate solution set. This phase is followed by fine-tuning a good candidate solution in the exploitation stage with a focused local mutation and crossover (LMC) operator in order to enhance the reliability of the method for solving global numerical optimization problems. Moreover, the elitism scheme is introduced into the MSKH method to guarantee the best solution. The performance of MSKH is verified using twenty-five standard and rotated and shifted benchmark problems. The results show the superiority of the proposed algorithm to the standard KH and other well-known optimization methods.

2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hai Shen ◽  
Yunlong Zhu ◽  
Xiaodan Liang

Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO). Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo

A novel robust hybrid metaheuristic optimization approach, which can be considered as an improvement of the recently developed bat algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of pitch adjustment operation in HS serving as a mutation operator during the process of the bat updating with the aim of speeding up convergence, thus making the approach more feasible for a wider range of real-world applications. The detailed implementation procedure for this improved metaheuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most situations, the performance of this hybrid metaheuristic method (HS/BA) is superior to, or at least highly competitive with, the standard BA and other population-based optimization methods, such as ACO, BA, BBO, DE, ES, GA, HS, PSO, and SGA. The effect of the HS/BA parameters is also analyzed.


Author(s):  
R. Oftadeh ◽  
M. J. Mahjoob

This paper presents a novel structural optimization algorithm based on group hunting of animals such as lions, wolves, and dolphins. Although these hunters have differences in the way of hunting but they are common in that all of them look for a prey in a group. The hunters encircle the prey and gradually tighten the ring of siege until they catch the prey. In addition, each member of the group corrects its position based on its own position and the position of other members. If the prey escapes from the ring, the hunters reorganize the group to siege the prey again. A benchmark numerical optimization problems is presented to show how the algorithm works. Three benchmark structural optimization problems are also presented to demonstrate the effectiveness and robustness of the proposed Hunting Search (HuS) algorithm for structural optimization. The objective in these problems is to minimize the weight of bar trusses. Both sizing and layout optimization variables are included, too. The proposed algorithm is compared with other global optimization methods such as CMLPSA (Corrected Multi-Level & Multi-Point Simulated Annealing) and HS (Harmony Search). The results indicate that the proposed method is a powerful search and optimization technique. It yields comparable and in some cases, better solutions compared to those obtained using current algorithms when applied to structural optimization problems.


2021 ◽  
Vol 16 (1) ◽  
pp. 14-18
Author(s):  
László Kota ◽  
Károly Jármai

AbstractIn the research projects and industrial projects severe optimization problems can be met, where the number of variables is high, there are a lot of constraints, and they are highly nonlinear and mostly discrete issues, where the running time can be calculated sometimes in weeks with the usual optimization methods on an average computer. In most cases in the logistics industry, the most robust constraint is the time. The optimizations are running on a typical office configuration, and the company accepts the suboptimal solution what the optimization method gives within the appropriate time limit. That is, why adaptivity is needed. The adaptivity of the optimization technique includes parameters of fine-tuning. On this way, the most sensitive setting can be found. In this article, some additional adaptive methods for logistic problems have been investigated to increase the effectivity, improve the solution in a strict time condition.


Author(s):  
Wienczyslaw Stalewski

The optimization methods are increasingly used to solve challenging problems of aeronautical engineering. Typically, the optimization methods are utilized in design of aircraft airframe or its structure. The presented study is focused on an improvement of aircraft-flight-control procedures through the numerical optimization approach. The optimization problems concern selected phases of flight of light gyroplane - a rotorcraft using an unpowered rotor in autorotation to develop lift and an engine-powered propeller to provide thrust. An original methodology of computational simulation of rotorcraft flight was developed and implemented. In this approach the aircraft-motion equations are solved step-by-step, simultaneously with the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations, which is conducted to assess aerodynamic forces acting on the aircraft. As a numerical optimization method, the BFGS algorithm was adapted. The developed methodology was applied to optimize the flight-control procedures in selected stages of gyroplane flight in direct proximity of the ground, where properly conducted control of the aircraft is critical to ensure flight safety and performance. The results of conducted computational optimizations proved qualitative correctness of the developed methodology. The research results can be helpful in design of easy-to-control gyroplanes and also in the training of pilots of this type of rotorcraft.


2018 ◽  
Vol 35 (1) ◽  
pp. 71-90 ◽  
Author(s):  
Xiwen Cai ◽  
Haobo Qiu ◽  
Liang Gao ◽  
Xiaoke Li ◽  
Xinyu Shao

Purpose This paper aims to propose hybrid global optimization based on multiple metamodels for improving the efficiency of global optimization. Design/methodology/approach The method has fully utilized the information provided by different metamodels in the optimization process. It not only imparts the expected improvement criterion of kriging into other metamodels but also intelligently selects appropriate metamodeling techniques to guide the search direction, thus making the search process very efficient. Besides, the corresponding local search strategies are also put forward to further improve the optimizing efficiency. Findings To validate the method, it is tested by several numerical benchmark problems and applied in two engineering design optimization problems. Moreover, an overall comparison between the proposed method and several other typical global optimization methods has been made. Results show that the global optimization efficiency of the proposed method is higher than that of the other methods for most situations. Originality/value The proposed method sufficiently utilizes multiple metamodels in the optimizing process. Thus, good optimizing results are obtained, showing great applicability in engineering design optimization problems which involve costly simulations.


Author(s):  
M. R. Lohokare ◽  
S.S. Pattnaik ◽  
S. Devi ◽  
B.K. Panigrahi ◽  
S. Das ◽  
...  

Biogeography-Based Optimization (BBO) uses the idea of probabilistically sharing features between solutions based on the solutions’ fitness values. Therefore, its exploitation ability is good but it lacks in exploration ability. In this paper, the authors extend the original BBO and propose a hybrid version combined with ePSO (particle swarm optimization with extrapolation technique), namely eBBO, for unconstrained global numerical optimization problems in the continuous domain. eBBO combines the exploitation ability of BBO with the exploration ability of ePSO effectively, which can generate global optimum solutions. To validate the performance of eBBO, experiments have been conducted on 23 standard benchmark problems with a range of dimensions and diverse complexities and compared with original BBO and other versions of BBO in terms of the quality of the final solution and the convergence rate. Influence of population size and scalability study is also considered and results are compared with statistical paired t-test. Experimental analysis indicates that the proposed approach is effective and efficient and improves the exploration ability of BBO.


2010 ◽  
Vol 1 (3) ◽  
pp. 1-26 ◽  
Author(s):  
M. R. Lohokare ◽  
S.S. Pattnaik ◽  
S. Devi ◽  
B.K. Panigrahi ◽  
S. Das ◽  
...  

Biogeography-Based Optimization (BBO) uses the idea of probabilistically sharing features between solutions based on the solutions’ fitness values. Therefore, its exploitation ability is good but it lacks in exploration ability. In this paper, the authors extend the original BBO and propose a hybrid version combined with ePSO (particle swarm optimization with extrapolation technique), namely eBBO, for unconstrained global numerical optimization problems in the continuous domain. eBBO combines the exploitation ability of BBO with the exploration ability of ePSO effectively, which can generate global optimum solutions. To validate the performance of eBBO, experiments have been conducted on 23 standard benchmark problems with a range of dimensions and diverse complexities and compared with original BBO and other versions of BBO in terms of the quality of the final solution and the convergence rate. Influence of population size and scalability study is also considered and results are compared with statistical paired t-test. Experimental analysis indicates that the proposed approach is effective and efficient and improves the exploration ability of BBO.


Sign in / Sign up

Export Citation Format

Share Document