candidate solution
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 52)

H-INDEX

9
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2596
Author(s):  
Vedik Basetti ◽  
Shriram S. Rangarajan ◽  
Chandan Kumar Shiva ◽  
Harish Pulluri ◽  
Ritesh Kumar ◽  
...  

In the present paper, a novel meta-heuristic algorithm, namely quasi-oppositional search-based political optimizer (QOPO), is proposed to solve a non-convex single and bi-objective economic and emission load dispatch problem (EELDP). In the proposed QOPO technique, an opposite estimate candidate solution is performed simultaneously on each candidate solution of the political optimizer to find a better solution of EELDP. In the bi-objective EELDP, QOPSO is applied to simultaneously minimize fuel costs and emissions by considering various constraints such as the valve-point loading effect (VPLE) and generator limits for a generation. The effectiveness of the proposed QOPO technique has been applied on three units, six units, 10-units, 11-units, 13-units, and 40-unit systems by considering the VPLE, transmission line losses, and generator limits. The results obtained using the proposed QOPO are compared with those obtained by other techniques reported in the literature. The relative results divulge that the proposed QOPO technique has a good exploration and exploitation capability to determine the optimal global solution compared to the other methods provided in the literature without violation of any constraints and bounded limits.


Author(s):  
DANIEL GIBERMAN

Abstract The problem of many-over-one asks how it can be that many properties are ever instantiated by one object. A putative solution might, for example, claim that the properties are appropriately bundled, or somehow tied to a bare particular. In this essay, the author argues that, surprisingly, an extant candidate solution to this problem is at the same time an independently developed candidate solution to the mind-body problem. Specifically, what is argued here to be the best version of the relata-specific bundle theory—the thesis that each instance of compresence has a special intrinsic nature in virtue of which it necessarily bundles its specific bundle-ees—is also a species of Russellian monism, labeled by David Chalmers as ‘constitutive Russellian panprotopsychism’. The upshot of this connection is significant for the metaphysics of the mind-body problem: a credible theory of property instantiation turns out to have a built-in account of how consciousness is grounded in certain (broadly) physical systems.


2021 ◽  
pp. 319-334
Author(s):  
Shunta Arai

AbstractIn this chapter, we analyze the typical performance of adiabatic reverse annealing (ARA) for Sourlas codes. Sourlas codes are representative error-correcting codes related to p-body spin-glass models and have a first-order phase transition for $$p>2$$ p > 2 , which degrades the estimation performance. In the ARA formulation, we introduce the initial Hamiltonian which incorporates the prior information of the solution into a vanilla quantum annealing (QA) formulation. The ground state of the initial Hamiltonian represents the initial candidate solution. To avoid the first-order phase transition, we apply ARA to Sourlas codes. We evaluate the typical ARA performance for Sourlas codes using the replica method. We show that ARA can avoid the first-order phase transition if we prepare for the proper initial candidate solution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josep Sola ◽  
Anna Vybornova ◽  
Sibylle Fallet ◽  
Erietta Polychronopoulou ◽  
Arlene Wurzner-Ghajarzadeh ◽  
...  

AbstractThe diagnosis of hypertension and the adjustment of antihypertensive drugs are evolving from isolated measurements performed at the physician offices to the full phenotyping of patients in real-life conditions. Indeed, the strongest predictor of cardiovascular risk comes from night measurements. The aim of this study was to demonstrate that a wearable device (the Aktiia Bracelet) can accurately estimate BP in the most common body positions of daily life and thus become a candidate solution for the BP phenotyping of patients. We recruited 91 patients with BP ranging from low to hypertensive levels and compared BP values from the Aktiia Bracelet against auscultatory reference values for 4 weeks according to an extended ISO 81060-2 protocol. After initializing on day one, the observed means and standard deviations of differences for systolic BP were of 0.46 ± 7.75 mmHg in the sitting position, − 2.44 ± 10.15 mmHg in the lying, − 3.02 ± 6.10 mmHg in the sitting with the device on the lap, and − 0.62 ± 12.51 mmHg in the standing position. Differences for diastolic BP readings were respectively of 0.39 ± 6.86 mmHg, − 1.93 ± 7.65 mmHg, − 4.22 ± 6.56 mmHg and − 4.85 ± 9.11 mmHg. This study demonstrates that a wearable device can accurately estimate BP in the most common body positions compared to auscultation, although precision varies across positions. While wearable persistent BP monitors have the potential to facilitate the identification of individual BP phenotypes at scale, their prognostic value for cardiovascular events and its association with target organ damage will need cross-sectional and longitudinal studies. Deploying this technology at a community level may be also useful to drive public health interventions against the epidemy of hypertension.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1243
Author(s):  
Tommaso Zanotti ◽  
Paolo Pavan ◽  
Francesco Maria Puglisi

Logic-in-memory (LIM) circuits based on the material implication logic (IMPLY) and resistive random access memory (RRAM) technologies are a candidate solution for the development of ultra-low power non-von Neumann computing architectures. Such architectures could enable the energy-efficient implementation of hardware accelerators for novel edge computing paradigms such as binarized neural networks (BNNs) which rely on the execution of logic operations. In this work, we present the multi-input IMPLY operation implemented on a recently developed smart IMPLY architecture, SIMPLY, which improves the circuit reliability, reduces energy consumption, and breaks the strict design trade-offs of conventional architectures. We show that the generalization of the typical logic schemes used in LIM circuits to multi-input operations strongly reduces the execution time of complex functions needed for BNNs inference tasks (e.g., the 1-bit Full Addition, XNOR, Popcount). The performance of four different RRAM technologies is compared using circuit simulations leveraging a physics-based RRAM compact model. The proposed solution approaches the performance of its CMOS equivalent while bypassing the von Neumann bottleneck, which gives a huge improvement in bit error rate (by a factor of at least 108) and energy-delay product (projected up to a factor of 1010).


Fractals ◽  
2021 ◽  
pp. 2240017 ◽  
Author(s):  
ANWARUD DIN ◽  
YONGJIN LI ◽  
FAIZ MUHAMMAD KHAN ◽  
ZIA ULLAH KHAN ◽  
PEIJIANG LIU

The scaling exponent of a hierarchy of cities used to be regarded as a fractional. This paper investigates a newly constructed system of equation for Hepatitis B disease in sense of Atanganaa–Baleanu Caputo (ABC) fractional order derivative. The proposed approach has five distinctive quantities, namely, susceptible, acute infections, chronic infection, immunized and vaccinated populace. By applying some well-known results of fixed point theory, we find the Ulam–Hyers type stability and qualitative analysis of the candidate solution. The deterministic stability for the proposed system is also computed. We apply well-known transform due to Laplace and decomposition techniques (LADM) and Adomian polynomial for nonlinear terms for computing the series solution for the proposed model. Graphical results show that LADM is an efficient and robust method for solving nonlinear problems.


Author(s):  
Lenin Kanagasabai

<p>This paper presents an opposition based red wolf optimization (ORWO) algorithm for solving optimal reactive power problem. Each red wolf has a flag vector in the algorithm, and length is equivalent to the whole sum of numbers which features in the dataset of the wolf optimization (WO). In this proposed algorithm, red wolf optimization algorithm has been intermingled with opposition-based learning (OBL). By this amalgamate procedure the convergence speed of the proposed algorithm will be increased. To discover an improved candidate solution, the concurrent consideration of a probable and its corresponding opposite are estimated which is closer to the global optimum than an arbitrary candidate solution. Proposed algorithm has been tested in standard IEEE 14-bus and 300-bus test systems. The simulation results show that the proposed algorithm reduced the real power loss considerably.</p>


Author(s):  
Kanagasabai Lenin

In this paper Merchant Optimization Algorithm (MOA) is proposed to solve the optimal reactive power problem. Projected algorithm is modeled based on the behavior of merchants who gain in the market through various mode and operations. Grouping of the traders will be done based on their specific properties, and by number of candidate solution will be computed to individual merchant. First Group named as “Ruler candidate solution” afterwards its variable values are dispersed to the one more candidate solution and it named as “Serf candidate solution” In standard IEEE 14, 30, 57 bus test systems Merchant Optimization Algorithm (MOA) have been evaluated.  Results show the proposed algorithm reduced power loss effectively.


Author(s):  
Malek Alzaqebah ◽  
Sana Jawarneh ◽  
Rami Mustafa A. Mohammad ◽  
Mutasem K. Alsmadi ◽  
Ibrahim Al-marashdeh ◽  
...  

Machine learning has been expansively examined with data classification as the most popularly researched subject. The accurateness of prediction is impacted by the data provided to the classification algorithm. Meanwhile, utilizing a large amount of data may incur costs especially in data collection and preprocessing. Studies on feature selection were mainly to establish techniques that can decrease the number of utilized features (attributes) in classification, also using data that generate accurate prediction is important. Hence, a particle swarm optimization (PSO) algorithm is suggested in the current article for selecting the ideal set of features. PSO algorithm showed to be superior in different domains in exploring the search space and local search algorithms are good in exploiting the search regions. Thus, we propose the hybridized PSO algorithm with an adaptive local search technique which works based on the current PSO search state and used for accepting the candidate solution. Having this combination balances the local intensification as well as the global diversification of the searching process. Hence, the suggested algorithm surpasses the original PSO algorithm and other comparable approaches, in terms of performance.


2021 ◽  
Vol 11 (11) ◽  
pp. 5053
Author(s):  
Vagelis Plevris ◽  
Nikolaos P. Bakas ◽  
German Solorzano

A new, fast, elegant, and simple stochastic optimization search method is proposed, which exhibits surprisingly good performance and robustness considering its simplicity. We name the algorithm pure random orthogonal search (PROS). The method does not use any assumptions, does not have any parameters to adjust, and uses basic calculations to evolve a single candidate solution. The idea is that a single decision variable is randomly changed at every iteration and the candidate solution is updated only when an improvement is observed; therefore, moving orthogonally towards the optimal solution. Due to its simplicity, PROS can be easily implemented with basic programming skills and any non-expert in optimization can use it to solve problems and start exploring the fascinating optimization world. In the present work, PROS is explained in detail and is used to optimize 12 multi-dimensional test functions with various levels of complexity. The performance is compared with the pure random search strategy and other three well-established algorithms: genetic algorithms (GA), particle swarm optimization (PSO), and differential evolution (DE). The results indicate that, despite its simplicity, the proposed PROS method exhibits very good performance with fast convergence rates and quick execution time. The method can serve as a simple alternative to established and more complex optimizers. Additionally, it could also be used as a benchmark for other metaheuristic optimization algorithms as one of the simplest, yet powerful, optimizers. The algorithm is provided with its full source code in MATLAB for anybody interested to use, test or explore.


Sign in / Sign up

Export Citation Format

Share Document