suboptimal solution
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 23)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 2131 (2) ◽  
pp. 022122
Author(s):  
V G Kobak ◽  
O A Zolotykh ◽  
I A Zolotykh ◽  
A V Poliev

Abstract The research of algorithms for uniform loading of devices for homogeneous information processing systems is a very important science-intensive task. An experimental approach was chosen for the research. This is primarily due to the fact that the analytical solution of the distribution problem gives solutions that are far from reality, since it is unable to take into account many factors that affect the computing machine during its operation. The aim of this research is to improve the accuracy characteristics of the list algorithms through the use of heuristic algorithms, such as Krohn’s algorithm and its modifications. This made it possible to obtain a more even distribution of tasks among executive devices, which can be networked workstations, processors or processor cores. The work uses list algorithms, such as the Critical Path algorithm and Pashkeev’s algorithm, as well as heuristic algorithms - Krohn’s algorithm and its modifications. The main idea of the research is to obtain the best suboptimal solution by improving the quality of the resulting distribution. In this case, with the help of the list algorithms, the initial distribution is formed, and its refinement is carried out through the application of the Krohn’s algorithm and its modifications. In fact, in the work, a number of symbiotic algorithms are examined and analyzed. For this, many computational experiments were carried out and a large amount of output data were collected, on the basis of which conclusions were drawn about the effectiveness of the solution obtained for each symbiotic group and for all groups as a whole.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2386
Author(s):  
Andrey A. Galyaev ◽  
Pavel V. Lysenko ◽  
Evgeny Y. Rubinovich

This article considers the mathematical aspects of the problem of the optimal interception of a mobile search vehicle moving along random tacks on a given route and searching for a target, which travels parallel to this route. Interception begins when the probability of the target being detected by the search vehicle exceeds a certain threshold value. Interception was carried out by a controlled vehicle (defender) protecting the target. An analytical estimation of this detection probability is proposed. The interception problem was formulated as an optimal stochastic control problem, which was transformed to a deterministic optimization problem. As a result, the optimal control law of the defender was found, and the optimal interception time was estimated. The deterministic problem is a simplified version of the problem whose optimal solution provides a suboptimal solution to the stochastic problem. The obtained control law was compared with classic guidance methods. All the results were obtained analytically and validated with a computer simulation.


2021 ◽  
Vol 8 (4) ◽  
pp. 626-634
Author(s):  
Abdul-Nasser Nofal ◽  
Abdel-Nasser Assimi ◽  
Yasser M. Jaamour

In this paper, we propose two algorithms for joint power allocation and bit-loading in multicarrier systems using discrete modulations. The objective is to maximize the data rate under the constraint of a suitable Bit Error Rate per subcarrier. The first algorithm is based on the Lagrangian Relaxation of the discrete optimization problem in order to find an initial solution. A discrete solution is found by bit truncation followed by an iterative modulation adjustment. The second algorithm is based on Discrete Coordinate Ascent framework with iterative modulation increment of one selected subcarrier at each iteration. A simple cost function related to the power increment per bit is used for subcarrier selection. A sub-optimal low complexity Discrete Coordinate Ascent algorithm is proposed that overcome the limitations of the Hughes-Hartogs algorithm. The Lagrangian Relaxation algorithm provides a suboptimal solution for non-coded system using M-QAM modulations, whereas the low complexity Discrete Coordinate Ascent algorithm provides a near optimal solution for coded as well as for non-coded system using an arbitrary modulation set. Numerical results show the efficiency of the proposed algorithms in comparison with traditional methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nolia Harudin ◽  
Faizir Ramlie ◽  
Wan Zuki Azman Wan Muhamad ◽  
M. N. Muhtazaruddin ◽  
Khairur Rijal Jamaludin ◽  
...  

Taguchi’s T-Method is one of the Mahalanobis Taguchi System- (MTS-) ruled prediction techniques that has been established specifically but not limited to small, multivariate sample data. The prediction model’s complexity aspect can be further enhanced by removing features that do not provide valuable information on the overall prediction. In order to accomplish this, a matrix called orthogonal array (OA) is used within the existing Taguchi’s T-Method. However, OA’s fixed-scheme matrix and its drawback in coping with the high-dimensionality factor led to a suboptimal solution. On the contrary, the usage of SNR (dB) as its objective function was a reliable measure. The application of Binary Bitwise Artificial Bee Colony (BitABC) has been adopted as the novel search engine that helps cater to OA’s limitation within Taguchi’s T-Method. The generalization aspect using bootstrap was a fundamental addition incorporated in this research to control the effect of overfitting in the analysis. The adoption of BitABC has been tested on eight (8) case studies, including large and small sample datasets. The result shows improved predictive accuracy ranging between 13.99% and 32.86% depending on cases. This study proved that incorporating BitABC techniques into Taguchi’s T-Method methodology effectively improved its prediction accuracy.


Author(s):  
Won J. Sohn ◽  
Terence D. Sanger

AbstractThe principle of constraint-induced therapy is widely practiced in rehabilitation. In hemiplegic cerebral palsy (CP) with impaired contralateral corticospinal projection due to unilateral injury, function improves after imposing a temporary constraint on limbs from the less affected hemisphere. This type of partially-reversible impairment in motor control by early brain injury bears a resemblance to the experience-dependent plastic acquisition and modification of neuronal response selectivity in the visual cortex. Previously, such mechanism was modeled within the framework of BCM (Bienenstock-Cooper-Munro) theory, a rate-based synaptic modification theory. Here, we demonstrate a minimally complex yet sufficient neural network model which provides a fundamental explanation for inter-hemispheric competition using a simplified spike-based model of information transmission and plasticity. We emulate the restoration of function in hemiplegic CP by simulating the competition between cells of the ipsilateral and contralateral corticospinal tracts. We use a high-speed hardware neural simulation to provide realistic numbers of spikes and realistic magnitudes of synaptic modification. We demonstrate that the phenomenon of constraint-induced partial reversal of hemiplegia can be modeled by simplified neural descending tracts with 2 layers of spiking neurons and synapses with spike-timing-dependent plasticity (STDP). We further demonstrate that persistent hemiplegia following unilateral cortical inactivation or deprivation is predicted by the STDP-based model but is inconsistent with BCM model. Although our model is a highly simplified and limited representation of the corticospinal system, it offers an explanation of how constraint as an intervention can help the system to escape from a suboptimal solution. This is a display of an emergent phenomenon from the synaptic competition.


2021 ◽  
Vol 4 (2(83)) ◽  
pp. 37-42
Author(s):  
N. Mamedov

In this article, the concepts of a guaranteed solution and a guaranteed suboptimal solution for the integer knapsack problem are derived. A method for finding a guaranteed suboptimal solution has been developed on the basis of one economic interpretation. Using this method, one specific problem was solved.


2021 ◽  
Vol 16 (1) ◽  
pp. 14-18
Author(s):  
László Kota ◽  
Károly Jármai

AbstractIn the research projects and industrial projects severe optimization problems can be met, where the number of variables is high, there are a lot of constraints, and they are highly nonlinear and mostly discrete issues, where the running time can be calculated sometimes in weeks with the usual optimization methods on an average computer. In most cases in the logistics industry, the most robust constraint is the time. The optimizations are running on a typical office configuration, and the company accepts the suboptimal solution what the optimization method gives within the appropriate time limit. That is, why adaptivity is needed. The adaptivity of the optimization technique includes parameters of fine-tuning. On this way, the most sensitive setting can be found. In this article, some additional adaptive methods for logistic problems have been investigated to increase the effectivity, improve the solution in a strict time condition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weihua Pan ◽  
Desheng Gong ◽  
Da Sun ◽  
Haohui Luo

AbstractDue to the high complexity of cancer genome, it is too difficult to generate complete cancer genome map which contains the sequence of every DNA molecule until now. Nevertheless, phasing each chromosome in cancer genome into two haplotypes according to germline mutations provides a suboptimal solution to understand cancer genome. However, phasing cancer genome is also a challenging problem, due to the limit in experimental and computational technologies. Hi-C data is widely used in phasing in recent years due to its long-range linkage information and provides an opportunity for solving the problem of phasing cancer genome. The existing Hi-C based phasing methods can not be applied to cancer genome directly, because the somatic mutations in cancer genome such as somatic SNPs, copy number variations and structural variations greatly reduce the correctness and completeness. Here, we propose a new Hi-C based pipeline for phasing cancer genome called HiCancer. HiCancer solves different kinds of somatic mutations and variations, and take advantage of allelic copy number imbalance and linkage disequilibrium to improve the correctness and completeness of phasing. According to our experiments in K562 and KBM-7 cell lines, HiCancer is able to generate very high-quality chromosome-level haplotypes for cancer genome with only Hi-C data.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jie Yang ◽  
Xinsheng Ji ◽  
Kaizhi Huang ◽  
Xiaoli Sun ◽  
Yi Wang

In this paper, secure transmission in a simultaneous wireless information and power transfer technology-enabled heterogeneous network with the aid of multiple IRSs is investigated. As a potential technology for 6G, intelligent reflecting surface (IRS) brings more spatial degrees of freedom to enhance physical layer security. Our goal is to maximize the secrecy rate by carefully designing the transmit beamforming vector, artificial noise vector, and reflecting coefficients under the constraint of quality-of-service. The formulated problem is hard to solve due to the nonconcave objective function as well as the coupling variables and unit-modulus constraints. Fortunately, by using alternating optimization, successive convex approximation, and sequential Rank-1 constraint relaxation approach, the original problem is transformed into convex form and a suboptimal solution is achieved. Numerical results show that the proposed scheme outperforms other existing benchmark schemes without IRS and can maintain promising security performance as the number of terminals increases with lower energy consumption.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Giacomo Moretti ◽  
Luca Zaccarian ◽  
Franco Blanchini

Abstract Motivated by engineering applications, we address bounded steady-state optimal control of linear dynamical systems undergoing steady-state bandlimited periodic oscillations. The optimization can be cast as a minimization problem by expressing the state and the input as finite Fourier series expansions, and using the expansions coefficients as parameters to be optimized. With this parametrization, we address linear quadratic problems involving periodic bandlimited dynamics by using quadratic minimization with parametric time-dependent constraints. We hence investigate the implications of a discretization of linear continuous time constraints and propose an algorithm that provides a feasible suboptimal solution whose cost is arbitrarily close to the optimal cost for the original constrained steady-state problem. Finally, we discuss practical case studies that can be effectively tackled with the proposed framework, including optimal control of DC/AC power converters, and optimal energy harvesting from pulsating mechanical energy sources.


Sign in / Sign up

Export Citation Format

Share Document