A New Structural Optimization Method Based on Group Hunting of Animals: Hunting Search (HuS)

Author(s):  
R. Oftadeh ◽  
M. J. Mahjoob

This paper presents a novel structural optimization algorithm based on group hunting of animals such as lions, wolves, and dolphins. Although these hunters have differences in the way of hunting but they are common in that all of them look for a prey in a group. The hunters encircle the prey and gradually tighten the ring of siege until they catch the prey. In addition, each member of the group corrects its position based on its own position and the position of other members. If the prey escapes from the ring, the hunters reorganize the group to siege the prey again. A benchmark numerical optimization problems is presented to show how the algorithm works. Three benchmark structural optimization problems are also presented to demonstrate the effectiveness and robustness of the proposed Hunting Search (HuS) algorithm for structural optimization. The objective in these problems is to minimize the weight of bar trusses. Both sizing and layout optimization variables are included, too. The proposed algorithm is compared with other global optimization methods such as CMLPSA (Corrected Multi-Level & Multi-Point Simulated Annealing) and HS (Harmony Search). The results indicate that the proposed method is a powerful search and optimization technique. It yields comparable and in some cases, better solutions compared to those obtained using current algorithms when applied to structural optimization problems.


Author(s):  
Liqun Wang ◽  
Songqing Shan ◽  
G. Gary Wang

The presence of black-box functions in engineering design, which are usually computation-intensive, demands efficient global optimization methods. This work proposes a new global optimization method for black-box functions. The global optimization method is based on a novel mode-pursuing sampling (MPS) method which systematically generates more sample points in the neighborhood of the function mode while statistically covers the entire search space. Quadratic regression is performed to detect the region containing the global optimum. The sampling and detection process iterates until the global optimum is obtained. Through intensive testing, this method is found to be effective, efficient, robust, and applicable to both continuous and discontinuous functions. It supports simultaneous computation and applies to both unconstrained and constrained optimization problems. Because it does not call any existing global optimization tool, it can be used as a standalone global optimization method for inexpensive problems as well. Limitation of the method is also identified and discussed.



2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo

A novel robust hybrid metaheuristic optimization approach, which can be considered as an improvement of the recently developed bat algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of pitch adjustment operation in HS serving as a mutation operator during the process of the bat updating with the aim of speeding up convergence, thus making the approach more feasible for a wider range of real-world applications. The detailed implementation procedure for this improved metaheuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most situations, the performance of this hybrid metaheuristic method (HS/BA) is superior to, or at least highly competitive with, the standard BA and other population-based optimization methods, such as ACO, BA, BBO, DE, ES, GA, HS, PSO, and SGA. The effect of the HS/BA parameters is also analyzed.



2013 ◽  
Vol 365-366 ◽  
pp. 174-177
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

Harmony search (HS) algorithm is a good meta-heuristic intelligent optimization method and it does depend on imitating the music improvisation process to generate a perfect state of harmony. However, intelligent optimization methods is easily trapped into local optimal, HS is no exception. In order to modify the optimization performance of HS, a new variant of harmony search algorithm is proposed in this paper. The variant integrate the position updating of the particle swarm optimization algorithm with pitch adjustment operation, and dynamically adjust the key parameter pitch adjusting rate (PAR) and bandwidth (BW). Several standard benchmarks are to be tested. The numerical results demonstrated the superiority of the proposed method to the HS and recently developed variants (IHS, and GHS).



2014 ◽  
Vol 989-994 ◽  
pp. 2528-2531
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

Harmony search algorithm is a new meta-heuristic optimization method imitating the music improvisation process where musicians improvise their instruments’ pitches searching for a perfect state of harmony. To enable the harmony search algorithm to transcend its limited capability of local optimum, a modified harmony search algorithm is proposed in this paper. In the modified harmony search algorithm, the mutation operation of differential evolution algorithm is introduced into MHS algorithm, which improves its convergence. Several standard benchmark optimization functions are to be test and compare the performance of the MHS. The results revealed the superiority of the proposed method to the HS and recently developed variants.



2016 ◽  
Vol 25 (02) ◽  
pp. 1550030 ◽  
Author(s):  
Gai-Ge Wang ◽  
Amir H. Gandomi ◽  
Amir H. Alavi ◽  
Suash Deb

A multi-stage krill herd (MSKH) algorithm is presented to fully exploit the global and local search abilities of the standard krill herd (KH) optimization method. The proposed method involves exploration and exploitation stages. The exploration stage uses the basic KH algorithm to select a good candidate solution set. This phase is followed by fine-tuning a good candidate solution in the exploitation stage with a focused local mutation and crossover (LMC) operator in order to enhance the reliability of the method for solving global numerical optimization problems. Moreover, the elitism scheme is introduced into the MSKH method to guarantee the best solution. The performance of MSKH is verified using twenty-five standard and rotated and shifted benchmark problems. The results show the superiority of the proposed algorithm to the standard KH and other well-known optimization methods.



2021 ◽  
Vol 16 (1) ◽  
pp. 14-18
Author(s):  
László Kota ◽  
Károly Jármai

AbstractIn the research projects and industrial projects severe optimization problems can be met, where the number of variables is high, there are a lot of constraints, and they are highly nonlinear and mostly discrete issues, where the running time can be calculated sometimes in weeks with the usual optimization methods on an average computer. In most cases in the logistics industry, the most robust constraint is the time. The optimizations are running on a typical office configuration, and the company accepts the suboptimal solution what the optimization method gives within the appropriate time limit. That is, why adaptivity is needed. The adaptivity of the optimization technique includes parameters of fine-tuning. On this way, the most sensitive setting can be found. In this article, some additional adaptive methods for logistic problems have been investigated to increase the effectivity, improve the solution in a strict time condition.



Author(s):  
Wienczyslaw Stalewski

The optimization methods are increasingly used to solve challenging problems of aeronautical engineering. Typically, the optimization methods are utilized in design of aircraft airframe or its structure. The presented study is focused on an improvement of aircraft-flight-control procedures through the numerical optimization approach. The optimization problems concern selected phases of flight of light gyroplane - a rotorcraft using an unpowered rotor in autorotation to develop lift and an engine-powered propeller to provide thrust. An original methodology of computational simulation of rotorcraft flight was developed and implemented. In this approach the aircraft-motion equations are solved step-by-step, simultaneously with the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations, which is conducted to assess aerodynamic forces acting on the aircraft. As a numerical optimization method, the BFGS algorithm was adapted. The developed methodology was applied to optimize the flight-control procedures in selected stages of gyroplane flight in direct proximity of the ground, where properly conducted control of the aircraft is critical to ensure flight safety and performance. The results of conducted computational optimizations proved qualitative correctness of the developed methodology. The research results can be helpful in design of easy-to-control gyroplanes and also in the training of pilots of this type of rotorcraft.



2007 ◽  
Vol 26-28 ◽  
pp. 793-796 ◽  
Author(s):  
Kang Seok Lee ◽  
Jin Kyu Song

Most structural optimization methods are based on mathematical algorithms that require substantial gradient information. The selection of the starting values is also important to ensure that the algorithm converges to the global optimum. This paper describes a new structural configuration optimization method based on the harmony search (HS) meta-heuristic algorithm. The HS algorithm does not require initial values and uses a random search instead of a gradient search, so derivative information is unnecessary. A benchmark truss example is presented to demonstrate the effectiveness and robustness of the proposed approach compared to other optimization methods. Results reveal that the proposed approach is capable of solving configuration optimization problems, and may yield better solutions than those obtained using earlier methods.



Author(s):  
Kazufumi Ito ◽  
Karl Kunisch

Abstract In this paper we discuss applications of the numerical optimization methods for nonsmooth optimization, developed in [IK1] for the variational formulation of image restoration problems involving bounded variation type energy criterion. The Uzawa’s algorithm, first order augmented Lagrangian methods and Newton-like update using the active set strategy are described.



Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.



Sign in / Sign up

Export Citation Format

Share Document