scholarly journals MAPS OF SURFACE GROUPS TO FINITE GROUPS WITH NO SIMPLE LOOPS IN THE KERNEL

2000 ◽  
Vol 09 (08) ◽  
pp. 1029-1036 ◽  
Author(s):  
CHARLES LIVINGSTON

Let Fg denote the closed orientable surface of genus g. What is the least order finite group, Gg, for which there is a homomorphism ψ:π1(Fg)→Gg so that nontrivial simple closed curve on Fg represents an element in Ker (ψ)? For the torus it is easily seen that G1=Z2×Z2 suffices. We prove here that G2 is a group of order 32 and that an upper bound for the order of Gg is given by g2g+1. The previously known upper bound was greater than 2g22g.

10.37236/7874 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Luis Goddyn ◽  
Kevin Halasz ◽  
E. S. Mahmoodian

The chromatic number of a latin square $L$, denoted $\chi(L)$, is the minimum number of partial transversals needed to cover all of its cells. It has been conjectured that every latin square satisfies $\chi(L) \leq |L|+2$. If true, this would resolve a longstanding conjecture—commonly attributed to Brualdi—that every latin square has a partial transversal of size $|L|-1$. Restricting our attention to Cayley tables of finite groups, we prove two results. First, we resolve the chromatic number question for Cayley tables of finite Abelian groups: the Cayley table of an Abelian group $G$ has chromatic number $|G|$ or $|G|+2$, with the latter case occurring if and only if $G$ has nontrivial cyclic Sylow 2-subgroups. Second, we give an upper bound for the chromatic number of Cayley tables of arbitrary finite groups. For $|G|\geq 3$, this improves the best-known general upper bound from $2|G|$ to $\frac{3}{2}|G|$, while yielding an even stronger result in infinitely many cases.


2006 ◽  
Vol 74 (1) ◽  
pp. 121-132 ◽  
Author(s):  
A. Abdollahi ◽  
A. Azad ◽  
A. Mohammadi Hassanabadi ◽  
M. Zarrin

This paper is an attempt to provide a partial answer to the following question put forward by Bernhard H. Neumann in 2000: “Let G be a finite group of order g and assume that however a set M of m elements and a set N of n elements of the group is chosen, at least one element of M commutes with at least one element of N. What relations between g, m, n guarantee that G is Abelian?” We find an exponential function f(m,n) such that every such group G is Abelian whenever |G| > f(m,n) and this function can be taken to be polynomial if G is not soluble. We give an upper bound in terms of m and n for the solubility length of G, if G is soluble.


1969 ◽  
Vol 9 (3-4) ◽  
pp. 467-477 ◽  
Author(s):  
J. N. Ward

Let G denote a finite group with a fixed-point-free automorphism of prime order p. Then it is known (see [3] and [8]) that G is nilpotent of class bounded by an integer k(p). From this it follows that the length of the derived series of G is also bounded. Let l(p) denote the least upper bound of the length of the derived series of a group with a fixed-point-free automorphism of order p. The results to be proved here may now be stated: Theorem 1. Let G denote a soluble group of finite order and A an abelian group of automorphisms of G. Suppose that (a) ∣G∣ is relatively prime to ∣A∣; (b) GAis nilpotent and normal inGω, for all ω ∈ A#; (c) the Sylow 2-subgroup of G is abelian; and (d) if q is a prime number andqk+ 1 divides the exponent of A for some integer k then the Sylow q-subgroup of G is abelian.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750043
Author(s):  
Martino Garonzi ◽  
Dan Levy ◽  
Attila Maróti ◽  
Iulian I. Simion

We consider factorizations of a finite group [Formula: see text] into conjugate subgroups, [Formula: see text] for [Formula: see text] and [Formula: see text], where [Formula: see text] is nilpotent or solvable. We derive an upper bound on the minimal length of a solvable conjugate factorization of a general finite group which, for a large class of groups, is linear in the non-solvable length of [Formula: see text]. We also show that every solvable group [Formula: see text] is a product of at most [Formula: see text] conjugates of a Carter subgroup [Formula: see text] of [Formula: see text], where [Formula: see text] is a positive real constant. Finally, using these results we obtain an upper bound on the minimal length of a nilpotent conjugate factorization of a general finite group.


1973 ◽  
Vol 9 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Fletcher Gross

Suppose G = AB where G is a finite group and A and B are nilpotent subgroups. It is proved that the derived length of G modulo its Frattini subgroup is at most the sum of the classes of A and B. An upper bound for the derived length of G in terms of the derived lengths of A and B also is obtained.


2016 ◽  
Vol 15 (10) ◽  
pp. 1650197 ◽  
Author(s):  
Seyyed Majid Jafarian Amiri ◽  
Halimeh Madadi

For a finite group [Formula: see text], let [Formula: see text] be the maximum size of a set of pairwise noncommuting elements in [Formula: see text]. In this paper, we give an upper bound of [Formula: see text] for an arbitrary nilpotent group [Formula: see text]. As an application of this result, we give a partial answer to Question 2.8 of [A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7(2) (2000) 139–146]. Also we compute [Formula: see text] when [Formula: see text] is a Frobenius group. Finally we describe structural properties of all groups [Formula: see text] with [Formula: see text].


2005 ◽  
Vol 12 (02) ◽  
pp. 255-261 ◽  
Author(s):  
Mohammad Reza R. Moghaddam ◽  
Ali Reza Salemkar ◽  
Kazem Chiti

Gallagher (1970) and Gustafson (1973) introduced the commutativity degree of a finite group. In this paper, we define the n-nilpotency degree of finite groups for n ≥ 1, and prove some results as Lescot (1995) does for a certain class of groups. In particular, it is shown that the n-isoclinism of finite groups preserves their n-nilpotency degrees. Finally, some sharper and more general upper bound than previously known is constructed for the commutativity degree of non-abelian finite groups.


2018 ◽  
Vol 97 (2) ◽  
pp. 229-239
Author(s):  
FRANCESCO DE GIOVANNI ◽  
ALESSIO RUSSO

Let $k$ be a nonnegative integer. A subgroup $X$ of a group $G$ has normal length $k$ in $G$ if all chains between $X$ and its normal closure $X^{G}$ have length at most $k$, and $k$ is the length of at least one of these chains. The group $G$ is said to have finite normal length if there is a finite upper bound for the normal lengths of its subgroups. The aim of this paper is to study groups of finite normal length. Among other results, it is proved that if all subgroups of a locally (soluble-by-finite) group $G$ have finite normal length in $G$, then the commutator subgroup $G^{\prime }$ is finite and so $G$ has finite normal length. Special attention is given to the structure of groups of normal length $2$. In particular, it is shown that finite groups with this property admit a Sylow tower.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


Sign in / Sign up

Export Citation Format

Share Document