scholarly journals Relativistic Mean-Field Approximation with Density-Dependent Screening Meson Masses in Nuclear Matter

2003 ◽  
Vol 12 (04) ◽  
pp. 543-554 ◽  
Author(s):  
Bao-Xi Sun ◽  
Xiao-Fu Lu ◽  
Peng-Nian Shen ◽  
En-Guang Zhao

The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons.

2011 ◽  
Vol 20 (09) ◽  
pp. 1983-2010 ◽  
Author(s):  
A. SULAKSONO

The effects of auxiliary contribution in forms of electromagnetic tensors and relativistic electromagnetic exchange in local density approximation as well as δ meson and isovector density-dependent nonlinear terms in standard relativistic mean field model constrained by nuclear matter stability criteria in some selected finite nuclei and nuclear matter properties are studied. It is found that in the case of finite nuclei, the electromagnetic tensors play the most dominant part compared to other auxiliary terms. Due to the presence of electromagnetic tensors, the binding energies prediction of the model can be improved quite significantly. However, these terms do not yield demanded effects for rms radii prediction. In the case of nuclear matter properties, the isovector density-dependent nonlinear term plays the most crucial role in providing predictions which are quite compatible with experimental constraints. We have also shown these auxiliary contributions are indeed unable to improve the single particle spectrum results of the model.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 2400-2406
Author(s):  
R. HUGUET ◽  
J. C. CAILLON ◽  
J. LABARSOUQUE

We have built an effective Walecka-type hadronic Lagrangian in which the hadron masses and the density dependence of the coupling constants are deduced from the quark dynamics using a Nambu–Jona-Lasinio model. In order to stabilize nuclear matter an eight-quark term has been included. The parameters of this Nambu–Jona-Lasinio model have been determined using the meson properties in the vacuum but also in the medium through the omega meson mass in nuclei measured by the TAPS collaboration. Realistic properties of nuclear matter have been obtained.


Sign in / Sign up

Export Citation Format

Share Document