scholarly journals PERIODIC ORBIT THEORY INCLUDING SPIN DEGREES OF FREEDOM

2004 ◽  
Vol 13 (01) ◽  
pp. 19-28 ◽  
Author(s):  
MATTHIAS BRACK ◽  
CHRISTIAN AMANN ◽  
MIKHAIL PLETYUKHOV ◽  
OLEG ZAITSEV

We summarize recent developments of the semiclassical description of shell effects in finite fermion systems with explicit inclusion of spin degrees of freedom, in particluar in the presence of spin-orbit interactions. We present a new approach that makes use of spin coherent states and a correspondingly enlarged classical phase space. Taking suitable limits, we can recover some of the earlier approaches. Applications to some model systems are presented.

2020 ◽  
Vol 29 (09) ◽  
pp. 2050071
Author(s):  
Saniya Monga ◽  
Harjeet Kaur ◽  
Sudhir R. Jain

We demonstrate that pairing phase transition (superfluid to normal) can be described quite generally in terms of the thermodynamical properties after verifying the obtained level densities with the available experimental data for [Formula: see text]- isotopes. Periodic-orbit theory conveniently connects the oscillatory part of level density to the underlying classical periodic orbits and hence, leads to the shell effects in the single-particle level density. Such methods incorporated with pairing effects can be used effectively to study the phase transitions in [Formula: see text]-isotopes. In addition to this, an interplay between pairing correlations and the shell effects has been understood by analyzing the results obtained for the critical temperatures and shell structure energies for [Formula: see text] isotopes. A relation between variation in critical temperatures caused by shell effects and the shell structure energies determined with and without pairing effects has been established. Furthermore, the systematics of the heat capacity (giving a clear signature of pairing phase transition) as function of temperature for these nuclei are investigated as well.


Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2017 ◽  
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


1937 ◽  
Vol 4 (3) ◽  
pp. A105-A108
Author(s):  
Hugh L. Dryden

Abstract A brief account is given of the principal concepts which have been utilized in the formulation of theories of the turbulent motion of fluids prior to 1935 and the new approach originated by G. I. Taylor in that year. A bibliography of 31 papers is included.


2017 ◽  
Vol 23 (10) ◽  
pp. 1377-1388 ◽  
Author(s):  
Seyyed Abbas Mohammadi ◽  
Heinrich Voss

This paper proposes a new approach for computing the real eigenvalues of a multiple-degrees-of-freedom viscoelastic system in which we assume an exponentially decaying damping. The free-motion equations lead to a nonlinear eigenvalue problem. If the system matrices are symmetric, the eigenvalues allow for a variational characterization of maxmin type, and the eigenvalues and eigenvectors can be determined very efficiently by the safeguarded iteration, which converges quadratically and, for extreme eigenvalues, monotonically. Numerical methods demonstrate the performance and the reliability of the approach. The method succeeds where some current approaches, with restrictive physical assumptions, fail.


Sign in / Sign up

Export Citation Format

Share Document