particle level
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 176)

H-INDEX

38
(FIVE YEARS 11)

2022 ◽  
Vol 23 (2) ◽  
pp. 778
Author(s):  
Aurélie Crepin ◽  
Erica Belgio ◽  
Barbora Šedivá ◽  
Eliška Kuthanová Trsková ◽  
Edel Cunill-Semanat ◽  
...  

Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more “quenched” than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.


Author(s):  
Xing-Yu Zhang ◽  
Yinhua Bao ◽  
Jian Chen ◽  
Hao-Sen Chen

Abstract Understanding and alleviating the chemo-mechanical degradation of silicon anodes is a formidable challenge due to the large volume change during operations. Here, for a comprehensive understanding of heterogeneous effects on chemo-mechanical behaviors at the single-particle level, in-situ observation of single-crystalline silicon micropillar electrodes under the inhomogeneous extrinsic conditions, taken as an example, was made. The observation shows that the anisotropic deformation patterns and fracture starting sites are reshaped with the combination of the inhomogeneous electrochemical driving force for charge transfer at the interface between the silicon micropillar and the electrolyte, and crystal orientation-dependent lithiation dynamics. Also, the numerical simulation unravels the underlying mechanisms of deformation and fracture behaviors, and well predicts the relative depth of lithiation at the time of crack initiation under heterogeneous conditions. The results show that heterogeneities arising from extrinsic conditions may induce inhomogeneous mechanical damage and tailor lithiation degree at an active particle level, offering insights into designing large-volume-change battery particles with good mechanical integrity and electrochemical performance under heterogeneous impacts.


Author(s):  
Laurence Savignac ◽  
John M. Griffin ◽  
Steen Brian Schougaard

Abstract Substitution of iron by other transition metals within the remarkably stable olivine framework is of interest considering the expected gain in energy density. However, manganese rich olivine materials suffer from sluggish redox kinetics, leading to electrochemical performances at high current densities which are below expectations. The source of the kinetic limitations is not clear, with multiple processes having been proposed, including low bulk electronic conductivity, structural instability of Mn3+ and a phase transition mechanism. This study employed 7Li MAS NMR relaxation techniques to indirectly probe Li+ dynamics using various stoichiometry of chemically prepared LixMnyFe1-yPO4 (0 ≤ (x, y) ≤ 1). Focusing on the particle level, the aim was to understand how the different crystal phases, alongside the Mn structural contribution, influence Li+ transport at each stage of the oxidation process. Significantly, the formation of an olivine solid solution with vacancies within this progression gave rise to a faster 7Li transverse relaxation derived from superior Li+ motion.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2194
Author(s):  
Kostas Giannis ◽  
Carsten Schilde ◽  
Jan Henrik Finke ◽  
Arno Kwade

The purpose of this work is to simulate the powder compaction of pharmaceutical materials at the microscopic scale in order to better understand the interplay of mechanical forces between particles, and to predict their compression profiles by controlling the microstructure. For this task, the new framework of multi-contact discrete element method (MC-DEM) was applied. In contrast to the conventional discrete element method (DEM), MC-DEM interactions between multiple contacts on the same particle are now explicitly taken into account. A new adhesive elastic-plastic multi-contact model invoking neighboring contact interaction was introduced and implemented. The uniaxial compaction of two microcrystalline cellulose grades (Avicel® PH 200 (FMC BioPolymer, Philadelphia, PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-Hardenberg, Germany) subjected to high confining conditions was studied. The objectives of these simulations were: (1) to investigate the micromechanical behavior; (2) to predict the macroscopic behavior; and (3) to develop a methodology for the calibration of the model parameters needed for the MC-DEM simulations. A two-stage calibration strategy was followed: first, the model parameters were directly measured at the micro-scale (particle level) and second, a meso-scale calibration was established between MC-DEM parameters and compression profiles of the pharmaceutical powders. The new MC-DEM framework could capture the main compressibility characteristics of pharmaceutical materials and could successfully provide predictions on compression profiles at high relative densities.


2021 ◽  
Author(s):  
Usman Ali ◽  
◽  
Mamoru Kikumoto ◽  
Matteo Ciantia ◽  
Ying Cui ◽  
...  

Biaxial shearing tests on dual-sized, 2d particle assemblies are conducted at several confining pressures. The effect of particle angularity, an important mesoscale shape descriptor, is investigated at the macro and micro levels. Macroscopically, it is observed that assemblies composed of angular particles exhibit higher strengths and dilations. The difference observed in bulk behavior due to particle angularity can be explained reasonably by considering particle-level mechanisms. A novel 2D image analysis technique is employed to estimate particle kinematics. Particle rotation results to be a key mechanism strongly influenced by particle shape determining the overall granular behavior. Unlike circular particles, angular ones are more resistant to rotations due to stronger interlocking and consequently exhibit higher strengths.


2021 ◽  
Vol 21 (11) ◽  
pp. 287
Author(s):  
Jing-Jing Liu ◽  
Dong-Mei Liu

Abstract Using the theory of relativistic mean-field effective interactions, the influences of superstrong magnetic fields (SMFs) on electron Fermi energy, binding energy per nucleus and single-particle level structure are discussed in super-Chandrasekhar magnetic white dwarfs. Based on the relativistical SMFs theory model of Potekhin et al., the electron chemical potential is corrected in SMFs, and the electron capture (EC) of iron group nuclei is investigated by using the Shell-Model Monte Carlo method and Random Phase Approximation theory. The EC rates can increase by more than three orders of magnitude due to the increase of the electron Fermi energy and the change of single-particle level structure by SMFs. However, the EC rates can decrease by more than four orders of magnitude due to increase of the nuclei binding energy by SMFs. We compare our results with those of FFNs (Fuller et al.), AUFDs (Aufderheide et al.) and Nabi (Nabi et al.). Our rates are higher by about four orders of magnitude than those of FFN, AUFD and Nabi due to SMFs. Our study may have important reference value for subsequent studies of the instability, mass radius relationship, and thermal and magnetic evolution of super-Chandrasekhar magnetic white dwarfs.


AIChE Journal ◽  
2021 ◽  
Author(s):  
Haifeng Wang ◽  
Yanpei Chen ◽  
Wei Wang
Keyword(s):  

Author(s):  
Dongseok Kim ◽  
Rosemary L Calabro ◽  
Abdullah A Masud ◽  
Nadeesha L Kothalawala ◽  
Minsu Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document