Problem of energy scale in rigid triaxial rotor model

Author(s):  
J. B. Gupta ◽  
Vikas Katoch

The problem of mismatching of the level energies, in the ground band and the [Formula: see text]-band of triaxially deformed atomic nuclei, as predicted in the rigid triaxial rotor (RTR) approximation of Davydov and Filippov (DF) model, with experiment, is well known. Here, we illustrate the solutions suggested in the literature, and the deviations observed in the converted energy values, from the experiment. We analyze the source of problem of this mismatch with experiment. This enables a physical picture of the DF (or RTR) model spectra. Our analysis will help in understanding the merits and the limitation of the RTR model in this respect.

2020 ◽  
Author(s):  
Rostislav V. Jolos ◽  
Elena A. Kolganova

1963 ◽  
Vol 81 (10) ◽  
pp. 271-334 ◽  
Author(s):  
L.A. Borisoglebskii
Keyword(s):  

Author(s):  
Rostislav V. Jolos ◽  
Elena A. Kolganova

Author(s):  
Р. М. Плекан ◽  
В. Ю. Пойда ◽  
І. В. Хіміч

2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document