Dirichlet problem of Poisson equations on a type of higher dimensional fractal sets

Fractals ◽  
2021 ◽  
Author(s):  
Le Zhu ◽  
Yipeng Wu ◽  
Zhilong Chen ◽  
Kui Yao ◽  
Shuai Huang ◽  
...  
Fractals ◽  
2020 ◽  
Vol 28 (05) ◽  
pp. 2050090
Author(s):  
YIPENG WU ◽  
KUI YAO ◽  
LEI MU ◽  
ZHILONG CHEN

This paper studied the level-3 Sierpinski gasket. We solved Dirichlet problem of Poisson equations and proved variational principle on the level-3 Sierpinski gasket by expressing Green’s function explicitly.


Author(s):  
Vladimir Gutlyanskii ◽  
Vladimir Ryazanov ◽  
Eduard Yakubov

First, we study the Dirichlet problem for the Poisson equations \(\triangle u(z) = g(z)\) with \(g\in L^p\), \(p>1\), and continuous boundary data \(\varphi :\partial D\to\mathbb{R}\) in arbitrary Jordan domains \(D\) in \(\mathbb{C}\) and prove the existence of continuous solutions \(u\) of the problem in the class \(W^{2,p}_{\rm loc}\). Moreover, \(u\in W^{1,q}_{\rm loc}\) for some \(q>2\) and \(u\) is locally Hölder continuous. Furthermore, \(u\in C^{1,\alpha}_{\rm loc}\) with \(\alpha = (p-2)/p\) if \(p>2\). Then, on this basis and applying the Leray-Schauder approach, we obtain the similar results for the Dirichlet problem with continuous data in arbitrary Jordan domains to the quasilinear Poisson equations of the form \(\triangle u(z) = h(z)\cdot f(u(z))\) with the same assumptions on \(h\) as for \(g\) above and continuous functions \(f:\mathbb{R}\to\mathbb{R}\), either bounded or with nondecreasing \(|f\,|\) of \( |t\,|\) such that \(f(t)/t \to 0\) as \(t\to\infty\). We also give here applications to mathematical physics that are relevant to problems of diffusion with absorbtion, plasma and combustion. In addition, we consider the Dirichlet problem for the Poisson equations in the unit disk \(\mathbb{D}\subset\mathbb{C}\) with arbitrary boundary data \(\varphi :\partial\mathbb{D}\to\mathbb{R}\) that are measurable with respect to logarithmic capacity. Here we establish the existence of continuous nonclassical solutions \(u\) of the problem in terms of the angular limits in \(\mathbb D\) a.e. on \(\partial\mathbb D\) with respect to logarithmic capacity with the same local properties as above. Finally, we extend these results to almost smooth Jordan domains with qusihyperbolic boundary condition by Gehring-Martio.


Author(s):  
Danang Adi Pratama ◽  
Maharani Abu Bakar ◽  
Mustafa Man ◽  
M. Mashuri

Conventionally, partial differential equations (PDE) problems are solved numerically through discretization process by using finite difference approximations. The algebraic systems generated by this process are then finalized by using an iterative method. Recently, scientists invented a short cut approach, without discretization process, to solve the PDE problems, namely by using machine learning (ML). This is potential to make scientific machine learning as a new sub-field of research. Thus, given the interest in developing ML for solving PDEs, it makes an abundance of an easy-to-use methods that allows researchers to quickly set up and solve problems. In this review paper, we discussed at least three methods for solving high dimensional of PDEs, namely PyDEns, NeuroDiffEq, and Nangs, which are all based on artificial neural networks (ANNs). ANN is one of the methods under ML which proven to be a universal estimator function. Comparison of numerical results presented in solving the classical PDEs such as heat, wave, and Poisson equations, to look at the accuracy and efficiency of the methods. The results showed that the NeuroDiffEq and Nangs algorithms performed better to solve higher dimensional of PDEs than the PyDEns.


2001 ◽  
Vol 64 (1) ◽  
pp. 125-143 ◽  
Author(s):  
MEIRONG ZHANG

The paper studies the periodic and anti-periodic eigenvalues of the one-dimensional p-Laplacian with a periodic potential. After a rotation number function ρ(λ) has been introduced, it is proved that for any non-negative integer n, the endpoints of the interval ρ−1(n/2) in ℝ yield the corresponding periodic or anti-periodic eigenvalues. However, as in the Dirichlet problem of the higher dimensional p-Laplacian, it remains open if these eigenvalues represent all periodic and anti-periodic eigenvalues. The result obtained is a partial generalization of the spectrum theory of the one-dimensional Schrödinger operators with periodic potentials.


2013 ◽  
Vol 30 (2) ◽  
pp. 393-405
Author(s):  
Hung-Ju Kuo ◽  
Wen-Wei Lin ◽  
Chia-Tin Wang

Sign in / Sign up

Export Citation Format

Share Document