Fractal dimensions of Katugampola fractional integral of continuous functions satisfying Holder condition

Fractals ◽  
2021 ◽  
Author(s):  
Kui Yao ◽  
Zekun Wang ◽  
Xia Zhang ◽  
Wenliang Peng ◽  
Jia Yao
Fractals ◽  
2021 ◽  
Author(s):  
XIA TING ◽  
CHEN LEI ◽  
LUO LING ◽  
WANG YONG

This paper mainly discusses the influence of the Weyl fractional integrals on continuous functions and proves that the Weyl fractional integrals can retain good properties of many functions. For example, a bounded variation function is still a bounded variation function after the Weyl fractional integral. Continuous functions that satisfy the Holder condition after the Weyl fractional integral still satisfy the Holder condition, furthermore, there is a linear relationship between the order of the Holder conditions of the two functions. At the end of this paper, the classical Weierstrass function is used as an example to prove the above conclusion.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050005
Author(s):  
JIA YAO ◽  
YING CHEN ◽  
JUNQIAO LI ◽  
BIN WANG

In this paper, we make research on Katugampola and Hadamard fractional integral of one-dimensional continuous functions on [Formula: see text]. We proved that Katugampola fractional integral of bounded and continuous function still is bounded and continuous. Box dimension of any positive order Hadamard fractional integral of one-dimensional continuous functions is one.


Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050030 ◽  
Author(s):  
YONG-SHUN LIANG

In this work, we consider fractal dimension such as Box dimension, of Weyl fractional integral of certain continuous functions. Upper Box dimension of Weyl fractional integral of continuous functions satisfying [Formula: see text]-order Hölder condition of positive order [Formula: see text] is no more than both [Formula: see text] and [Formula: see text]. Furthermore, it is no more than [Formula: see text] which means strictly less than [Formula: see text]. Meanwhile, [Formula: see text], Box dimension of Weyl fractional integral of continuous functions satisfying [Formula: see text]-order Hölder condition must be one.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050123
Author(s):  
YONG-SHUN LIANG

In the present paper, fractal dimension and properties of fractional calculus of certain continuous functions have been investigated. Upper Box dimension of the Riemann–Liouville fractional integral of continuous functions satisfying the Hölder condition of certain positive orders has been proved to be decreasing linearly. If sum of order of the Riemann–Liouville fractional integral and the Hölder condition equals to one, the Riemann–Liouville fractional integral of the function will be Lipschitz continuous. If the corresponding sum is strictly larger than one, the Riemann–Liouville fractional integral of the function is differentiable. Estimation of fractal dimension of the derivative function has also been discussed. Finally, the Riemann–Liouville fractional derivative of continuous functions satisfying the Hölder condition exists when order of the Riemann–Liouville fractional derivative is smaller than order of the Hölder condition. Upper Box dimension of the function has been proved to be increasing at most linearly.


Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950084 ◽  
Author(s):  
YONG-SHUN LIANG

In this paper, fractal dimensions of fractional calculus of continuous functions defined on [Formula: see text] have been explored. Continuous functions with Box dimension one have been divided into five categories. They are continuous functions with bounded variation, continuous functions with at most finite unbounded variation points, one-dimensional continuous functions with infinite but countable unbounded variation points, one-dimensional continuous functions with uncountable but zero measure unbounded variation points and one-dimensional continuous functions with uncountable and non-zero measure unbounded variation points. Box dimension of Riemann–Liouville fractional integral of any one-dimensional continuous functions has been proved to be with Box dimension one. Continuous functions on [Formula: see text] are divided as local fractal functions and fractal functions. According to local structure and fractal dimensions, fractal functions are composed of regular fractal functions, irregular fractal functions and singular fractal functions. Based on previous work, upper Box dimension of any continuous functions has been proved to be no less than upper Box dimension of their Riemann–Liouville fractional integral. Fractal dimensions of Riemann–Liouville fractional derivative of certain continuous functions have been investigated elementary.


Sign in / Sign up

Export Citation Format

Share Document