integral conditions
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 81)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 40 ◽  
pp. 1-14
Author(s):  
Berhail Amel ◽  
Nora Tabouche

In this paper, We study the existence of positive solutions for Hadamard fractional differential equations with integral conditions. We employ Avery-Peterson fixed point theorem and properties of Green's function to show the existence of positive solutions of our problem. Furthermore, we present an example to illustrate our main result.


Author(s):  
Ф.М. Лосанова

В данной работе рассматривается нелокальная внутреннекраевая задача для уравнения дробной диффузии с оператором дробного дифференцирования в смысле Римана-Лиувилля с интегральными условиями. Исследуемая задача эквиваленто сведена к системе двух интегральных уравнений Вольтерра второго рода. Доказана теорема существования и единственности решения поставленной задачи. In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3292
Author(s):  
Songkran Pleumpreedaporn ◽  
Weerawat Sudsutad ◽  
Chatthai Thaiprayoon ◽  
Juan E. Nápoles ◽  
Jutarat Kongson

This paper investigates existence, uniqueness, and Ulam’s stability results for a nonlinear implicit ψ-Hilfer FBVP describing Navier model with NIBCs. By Banach’s fixed point theorem, the unique property is established. Meanwhile, existence results are proved by using the fixed point theory of Leray-Schauder’s and Krasnoselskii’s types. In addition, Ulam’s stability results are analyzed. Furthermore, several instances are provided to demonstrate the efficacy of the main results.


Author(s):  
Yazid GOUARI ◽  
Zoubir Dahmani ◽  
Meriem Mansouria BELHAMITI ◽  
Mehmet Zeki Sarikaya

We focus on a new type of nonlinear integro-differential equations with nonlocal integral conditions. The considered problem has one nonlinearity with time variable singularity. It involves also some convergent series combined to Riemann-Liouville integrals. We prove a uniqueness of solutions for the proposed problem, then, we provide some examples to illustrate this result. Also, we discuss the Ulam-Hyers stability for the problem. Some numerical simulations, using Rung Kutta method, are discussed too. At the end, a conclusion follows.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2571
Author(s):  
A. M. A. El-Sayed ◽  
Hoda A. Fouad

The fractional stochastic differential equations had many applications in interpreting many events and phenomena of life, and the nonlocal conditions describe numerous problems in physics and finance. Here, we are concerned with the combination between the three senses of derivatives, the stochastic Ito^-differential and the fractional and integer orders derivative for the second order stochastic process in two nonlocal problems of a coupled system of two random and stochastic differential equations with two nonlocal stochastic and random integral conditions and a coupled system of two stochastic and random integral conditions. We study the existence of mean square continuous solutions of these two nonlocal problems by using the Schauder fixed point theorem. We discuss the sufficient conditions and the continuous dependence for the unique solution.


2021 ◽  
Vol 40 (5) ◽  
pp. 1117-1135
Author(s):  
Ahcene Boukehila

In this work we investigate the existence and uniqueness of solutions of boundary value problems for fractional differential equations involving the Caputo fractional derivative with integral conditions and the nonlinear term depends on the fractional derivative of an unknown function. Our existence results are based on Banach contraction principle and Schauder fixed point theorem. Two examples are provided to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document