POTENTIAL-ENERGY SURFACES OF SODIUM CLUSTERS WITH QUADRUPOLE, HEXADECAPOLE, AND TRIAXIAL DEFORMATIONS

1996 ◽  
Vol 03 (01) ◽  
pp. 25-29 ◽  
Author(s):  
S.M. REIMANN ◽  
S. FRAUENDORF

Combining a modified Nilsson-Clemenger model with the shell-correction method, the potential-energy surfaces of sodium clusters with sizes of up to N = 200 atoms are calculated, including nonaxial deformations. For spherical clusters, the model potential is fitted to the single-particle spectra obtained from microscopically self-consistent Kohn-Sham calculations using the jellium model and the localdensity approximation. Employing the Strutinsky shell-correction method, the surface energy of the jellium model is renormalized to its experimental value. The ground-state shapes are determined by simultaneous minimization of the deformation energies for quadrupole, hexadecapole, and triaxial cluster deformations.

2009 ◽  
Vol 18 (04) ◽  
pp. 907-913 ◽  
Author(s):  
V. PASHKEVICH ◽  
Y. PYATKOV ◽  
A. UNZHAKOVA

Various fission processes are described in terms of high-dimensional potential energy surface in the frame of the Strutinsky shell correction method for actinide region. The complete deformation space is necessary to study the potential energy minima responsible for the cluster radioactivity, cold fission and cold multi-fragmentation valleys. The nuclear shape families for the different fission configurations are obtained without any specific change of the parameters. The coordinate system based on the Cassini ovaloids makes it possible to increase the number of independent deformation parameters without divergence. The higher orders of the deformation are shown to play an important role in the description of the potential energy surface structure.


2008 ◽  
Vol 129 (6) ◽  
pp. 064303 ◽  
Author(s):  
Dario De Fazio ◽  
Vincenzo Aquilanti ◽  
Simonetta Cavalli ◽  
Antonio Aguilar ◽  
Josep M. Lucas

1996 ◽  
Vol 37 (1) ◽  
pp. 63-74 ◽  
Author(s):  
T. Hirschmann ◽  
B. Montag ◽  
J. Meyer

Sign in / Sign up

Export Citation Format

Share Document