activation energies
Recently Published Documents


TOTAL DOCUMENTS

2050
(FIVE YEARS 218)

H-INDEX

78
(FIVE YEARS 7)

Author(s):  
M. N. Nikitin ◽  
D. Pashchenko

In this paper, a method of deducting activation energies for heterogeneous reactions of steam methane reforming is presented. The essence of the method lies in iterative evaluation of kinetic parameters, namely activation energies of reactions, for a given reactor. The novelty of the method lies in utilizing a statistical approach to reduce computational effort of numerical simulation. The method produces multivariable correlations between activation energies and operational parameters of the process: pressure, temperature, steam-to-methane ratio, residence time, and catalyst properties. These correlations can be used for numerical simulations of steam methane reforming to yield methane conversion rate, spatial and temporal distribution of reaction products, temperature and pressure within the reactor. An average computational effort is equal to a batch of 18 ([Formula: see text]) simulations for [Formula: see text] variables. The method was demonstrated by evaluating two-variable correlations of activation energies with pressure and temperature. The developed numerical model was validated against adopted experimental data.


2022 ◽  
Author(s):  
Amaraja Taur ◽  
Saurabh Kumar Singh ◽  
Pranav Ravindra Shirhatti

In this work we demonstrate a strategy for identifying experimental signatures of thermal and non-thermal effects in plasmon mediated heterogeneous catalytic chemistry, a topic widely debated and discussed in the literature. Our method is based on monitoring the progress of plasmon-induced (or thermally-driven) reaction, carried out in a closed system, all the way to equilibrium. Initial part of evolution of the reaction provides information about kinetics, whereas at later times the equilibrium concentrations provide information about effective temperature at the reaction sites. Combining these two pieces of information we estimate the activation energies. Using this strategy on H 2 (g) + D 2 (g) <-->2 HD(g) isotope exchange reaction, catalyzed by Au nanoparticles under thermally-driven and light-induced conditions, we estimate the activation energies to be 0.75 ± 0.02 eV and 0.21 ± 0.02 eV, respectively. These vastly different activation energies observed are interpreted as a signature of different reaction pathways followed by the system under thermally-driven and light-induced conditions.


Author(s):  
Antônio Junio Araujo Dias ◽  
Hiroto Takahashi ◽  
Juntaro Nogami ◽  
Yuki Nagashima ◽  
Ken Tanaka

The 1,3-diethoxycarbonyl-2,4,5-trimethylcyclopentadienyl (CpE) rhodium(III) complex displayed high efficacy in the catalytic oxidative annulation of 1-naphthols with internal alkynes under mild conditions. DFT calculations revealed that lower activation energies for the...


2021 ◽  
Author(s):  
Amaraja Taur ◽  
Saurabh Kumar Singh ◽  
Pranav Ravindra Shirhatti

In this work we demonstrate a strategy for identifying experimental signatures of thermal and non-thermal effects in plasmon mediated heterogeneous catalytic chemistry, a topic widely debated and discussed in the literature. Our method is based on monitoring the progress of plasmon induced (or thermally driven) reaction, carried out in a closed system, all the way to equilibrium. Initial part of evolution of the reaction provides information about kinetics, where as at later times the equilibrium concentrations provide information about effective temperature at the reaction sites. Combining these two pieces of information we estimate the activation energies. Using this strategy on H2 (g) + D2 (g) <--> 2 HD(g) isotope exchange reaction, catalyzed by Au nanoparticles under thermally driven and light induced conditions, we estimate the activation energies to be 0.75 ± 0.02 and 0.21 ± 0.02, respectively. These vastly different activation energies observed are interpreted as signatures of different reaction pathways followed by the system under thermally driven and light induced conditions.


2021 ◽  
Vol 413 ◽  
pp. 47-64
Author(s):  
Mykhaylo V. Yarmolenko

Our investigations show that electrochemical corrosion of copper is faster than electrochemical corrosion of aluminium at temperatures below 100°C. Literature data analysis shows that the Al atoms diffuse faster than the Cu atoms at temperatures higher than 475°C, Al rich intermetallic compounds (IMCs) are formed faster in the Cu-Al system, and the Kirkendall plane shifts toward the Al side. Electrochemical corrosion occurs due to electric current and due to diffusion. An electronic devise working time, for example, depends on initial copper cover thickness on aluminium wire, connected to the electronic devise, temperature, and volume and dislocation pipe diffusion coefficients, so copper, iron, and aluminium electrochemical corrosion rates are investigated experimentally at room temperature and at temperature 100°C. Intrinsic diffusivities ratios of copper and aluminium at different temperatures and diffusion activation energies in the Cu-Al system are calculated by proposed here methods using literature experimental data. Dislocation pipe and volume diffusion activation energies of pure iron are calculated separately by earlier proposed method using literature experimental data. Aluminium dissolved into NaCl solution as the Al3+ ions at room temperature and at temperature 100°C, iron dissolved into NaCl solution as the Fe2+ (not Fe3+) ions at room temperature and at temperature 100°C, copper dissolved into NaCl solution as the Cu+ ions at room temperature and as the Cu+ and the Cu2+ ions at temperature 100°C. It is found experimentally that copper corrosion is higher than aluminium corrosion, and ratio of electrochemical corrosion rates, kCu/kAl>1, decreases with temperature increasing, although iron electrochemical corrosion rate does not depend on temperature below 100°C. It is obvious, because the melting point of iron is more higher than the melting point of copper or aluminium. It is calculated that the copper electrochemical corrosion rate is approximately equal to aluminium electrochemical corrosion at temperature about 300°C, so copper can dissolve into NaCl solution mostly as the Cu2+ ions at temperature about 300°C. The ratio of intrinsic diffusivities, DCu/DAl<1, increases with temperature increasing, and the intrinsic diffusivity of aluminium could be approximately equal to the intrinsic diffusivity of copper at temperature about 460oC. Intrinsic diffusivities ratios in the Cu-Zn system at temperature 400°C and in the Cu-Sn system at temperatures from 190°C to 250°C are analyzed theoretically using literature experimental data. Diffusion activation energies and pre-exponential coefficients for the Cu-Sn system are calculated combining literature experimental results.


2021 ◽  
Vol 5 (4) ◽  
pp. 218-228
Author(s):  
L. N. Myasnikova ◽  
A. G. Maratova ◽  
K. Sh. Shunkeyev

This paper studies deformation-stimulated features of radiative relaxation of self-trapped excitons and recombination assembly of exciton-like luminescence in RbI crystal. Methods of research were luminescence and thermal activation spectroscopy. The identity of the mechanism of manifestation of the X-ray luminescence, tunnel luminescence and thermally stimulated luminescence spectra were found in the elastically deformed RbI crystal, interpreted by the luminescence of self-trapped exciton, tunnel recharge of F′, VK -pairs and thermally stimulated recombination of e−, VK -centres, respectively.The temperatures of the maximum destruction peaks of thermally stimulated luminescence, their spectral composition and activation energies were determined experimentally, on the basis of which the mechanisms of recombination assembly of exciton-like luminescences in a RbI crystal were interpreted. Uniaxial elastic deformation leads to the effective formation of point radiation defects ( F′, HA, VK -centers) in comparison with an unbroken lattice, where the predominant mechanism is the association of interstitial atoms ( H -centres) with the formation of I3−-centres.


2021 ◽  
Author(s):  
Md. Abdul Motin ◽  
Andreas Steiger-Thirsfeld ◽  
Michael Stöger-Pollach ◽  
Günther Rupprechter

AbstractA surface science based approach was applied to model carbon supported Pd nanoparticle catalysts. Employing physical vapour deposition of Pd on sputtered surfaces of highly oriented pyrolytic graphite (HOPG), model catalysts were prepared that are well-suited for characterization by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Analysis of the HOPG substrate before and after ion-bombardment, and of Pd/HOPG before and after annealing, revealed the number of “nominal” HOPG defects (~ 1014 cm−2) as well as the nucleation density (~ 1012 cm−2) and structural characteristics of the Pd nanoparticles (mean size/height/distribution). Two model systems were stabilized by UHV annealing to 300 °C, with mean Pd particles sizes of 4.3 and 6.8 nm and size/height aspect ratio up to ~ 10. A UHV-compatible flow microreactor and gas chromatography were used to determine the catalytic performance of Pd/HOPG in ethylene (C2H4) hydrogenation up to 150 °C under atmospheric pressure, yielding temperature-dependent conversion values, turnover frequencies (TOFs) and activation energies. The performance of Pd nanocatalysts is compared to that of polycrystalline Pd foil and contrasted to Pt/HOPG and Pt foil, pointing to a beneficial effect of the metal/carbon phase boundary, reflected by up to 10 kJ mol−1 lower activation energies for supported nanoparticles. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document