THE FEYNMAN–KAC FORMULA AND PRICING OCCUPATION TIME DERIVATIVES

1999 ◽  
Vol 02 (02) ◽  
pp. 153-178 ◽  
Author(s):  
JULIEN-N. HUGONNIER

In this paper, we undertake a study of occupation time derivatives that is derivatives for which the pay-off is contingent on both the terminal asset's price and one of its occupation times. To this end we use a formula of M. Kac to compute the joint law of Brownian motion and one of its occupation times. General pricing formulas for occupation time derivatives are established and it is shown that any occupation time derivative can be continuously hedged by a controlled portfolio of the basic securities. We further study some examples of interest including cumulative barrier options and discuss some numerical implementations.

Author(s):  
QIU-YUE LI ◽  
YAN-XIA REN

We derive a large deviation principle for occupation time of super α-stable process in ℝd with d > 2α. The decay of tail probabilities is shown to be exponential and the rate function is characterized. Our result can be considered as a counterpart of Lee's work on large deviations for occupation times of super-Brownian motion in ℝd for dimension d > 4 (see Ref. 10).


2017 ◽  
Vol 54 (1) ◽  
pp. 337-342 ◽  
Author(s):  
Philip A. Ernst ◽  
Larry Shepp

AbstractIn Bingham and Doney (1988) the authors presented the applied probability community with a question which is very simply stated, yet is extremely difficult to solve: what is the distribution of the quadrant occupation time of planar Brownian motion? In this paper we study an alternate formulation of this long-standing open problem: let X(t), Y(t) t≥0, be standard Brownian motions starting at x, y, respectively. Find the distribution of the total time T=Leb{t∈[0,1]: X(t)×Y(t)>0}, when x=y=0, i.e. the occupation time of the union of the first and third quadrants. If two adjacent quadrants are used, the problem becomes much easier and the distribution of T follows the arcsine law.


2017 ◽  
Vol 54 (2) ◽  
pp. 444-461 ◽  
Author(s):  
Fangjun Xu

Abstract We prove a second-order limit law for additive functionals of a d-dimensional fractional Brownian motion with Hurst index H = 1 / d, using the method of moments and extending the Kallianpur–Robbins law, and then give a functional version of this result. That is, we generalize it to the convergence of the finite-dimensional distributions for corresponding stochastic processes.


2012 ◽  
Vol 49 (02) ◽  
pp. 549-565 ◽  
Author(s):  
Lothar Breuer

In this paper we determine the distributions of occupation times of a Markov-modulated Brownian motion (MMBM) in separate intervals before a first passage time or an exit from an interval. We derive the distributions in terms of their Laplace transforms, and we also distinguish between occupation times in different phases. For MMBMs with strictly positive variation parameters, we further propose scale functions.


2018 ◽  
Vol 55 (4) ◽  
pp. 1287-1308 ◽  
Author(s):  
Nicos Starreveld ◽  
Réne Bekker ◽  
Michel Mandjes

AbstractIn this paper we present a set of results relating to the occupation time α(t) of a processX(·). The first set of results concerns exact characterizations of α(t), e.g. in terms of its transform up to an exponentially distributed epoch. In addition, we establish a central limit theorem (entailing that a centered and normalized version of α(t)∕tconverges to a zero-mean normal random variable ast→∞) and the tail asymptotics of ℙ(α(t)∕t≥q). We apply our findings to spectrally positive Lévy processes reflected at the infimum and establish various new occupation time results for the corresponding model.


2015 ◽  
Vol 47 (1) ◽  
pp. 210-230 ◽  
Author(s):  
Hongzhong Zhang

The drawdown process of a one-dimensional regular diffusion process X is given by X reflected at its running maximum. The drawup process is given by X reflected at its running minimum. We calculate the probability that a drawdown precedes a drawup in an exponential time-horizon. We then study the law of the occupation times of the drawdown process and the drawup process. These results are applied to address problems in risk analysis and for option pricing of the drawdown process. Finally, we present examples of Brownian motion with drift and three-dimensional Bessel processes, where we prove an identity in law.


Sign in / Sign up

Export Citation Format

Share Document