scholarly journals SEPARATING PRINCIPLES BELOW RAMSEY'S THEOREM FOR PAIRS

2013 ◽  
Vol 13 (02) ◽  
pp. 1350007 ◽  
Author(s):  
MANUEL LERMAN ◽  
REED SOLOMON ◽  
HENRY TOWSNER

In recent years, there has been a substantial amount of work in reverse mathematics concerning natural mathematical principles that are provable from RT, Ramsey's Theorem for Pairs. These principles tend to fall outside of the "big five" systems of reverse mathematics and a complicated picture of subsystems below RT has emerged. In this paper, we answer two open questions concerning these subsystems, specifically that ADS is not equivalent to CAC and that EM is not equivalent to RT.

2007 ◽  
Vol 72 (1) ◽  
pp. 171-206 ◽  
Author(s):  
Denis R. Hirschfeldt ◽  
Richard A. Shore

AbstractWe investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs () splits into a stable version () and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for and ). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL0, DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is -conservative over the base system RCA0. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch. Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply (and so does not imply ). This answers a question of Cholak, Jockusch, and Slaman.Our proofs suggest that the essential distinction between ADS and CAC on the one hand and on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.


2016 ◽  
Vol 22 (2) ◽  
pp. 151-169 ◽  
Author(s):  
LUDOVIC PATEY

AbstractRamsey’s theorem states that for any coloring of then-element subsets of ℕ with finitely many colors, there is an infinite setHsuch that alln-element subsets ofHhave the same color. The strength of consequences of Ramsey’s theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey’s theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey’s theorem.


2012 ◽  
Vol 77 (4) ◽  
pp. 1272-1280 ◽  
Author(s):  
Stephen Flood

AbstractIn this paper, we propose a weak regularity principle which is similar to both weak König's lemma and Ramsey's theorem. We begin by studying the computational strength of this principle in the context of reverse mathematics. We then analyze different ways of generalizing this principle.


2009 ◽  
Vol 74 (1) ◽  
pp. 201-215 ◽  
Author(s):  
Jennifer Chubb ◽  
Jeffry L. Hirst ◽  
Timothy H. McNicholl

AbstractWe examine the reverse mathematics and computability theory of a form of Ramsey's theorem in which the linear n-tuples of a binary tree are colored.


2016 ◽  
Vol 81 (4) ◽  
pp. 1531-1554 ◽  
Author(s):  
WEI WANG

AbstractWe introduce the definability strength of combinatorial principles. In terms of definability strength, a combinatorial principle is strong if solving a corresponding combinatorial problem could help in simplifying the definition of a definable set. We prove that some consequences of Ramsey’s Theorem for colorings of pairs could help in simplifying the definitions of some ${\rm{\Delta }}_2^0$ sets, while some others could not. We also investigate some consequences of Ramsey’s Theorem for colorings of longer tuples. These results of definability strength have some interesting consequences in reverse mathematics, including strengthening of known theorems in a more uniform way and also new theorems.


2016 ◽  
Vol 81 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
DAMIR D. DZHAFAROV

AbstractThis paper is a contribution to the growing investigation of strong reducibilities between ${\rm{\Pi }}_2^1$ statements of second-order arithmetic, viewed as an extension of the traditional analysis of reverse mathematics. We answer several questions of Hirschfeldt and Jockusch [13] about Weihrauch (uniform) and strong computable reductions between various combinatorial principles related to Ramsey’s theorem for pairs. Among other results, we establish that the principle $SRT_2^2$ is not Weihrauch or strongly computably reducible to $D_{ < \infty }^2$, and that COH is not Weihrauch reducible to $SRT_{ < \infty }^2$, or strongly computably reducible to $SRT_2^2$. The last result also extends a prior result of Dzhafarov [9]. We introduce a number of new techniques for controlling the combinatorial and computability-theoretic properties of the problems and solutions we construct in our arguments.


2010 ◽  
Vol 75 (3) ◽  
pp. 945-954 ◽  
Author(s):  
Jared Corduan ◽  
Marcia J. Groszek ◽  
Joseph R. Mileti

AbstractWe show, relative to the base theory RCA0: A nontrivial tree satisfies Ramsey's Theorem only if it is biembeddable with the complete binary tree. There is a class of partial orderings for which Ramsey's Theorem for pairs is equivalent to ACA0. Ramsey's Theorem for singletons for the complete binary tree is stronger than . hence stronger than Ramsey's Theorem for singletons for ω. These results lead to extensions of results, or answers to questions, of Chubb, Hirst, and McNicholl [3].


2014 ◽  
Vol 20 (2) ◽  
pp. 170-200 ◽  
Author(s):  
C. T. CHONG ◽  
WEI LI ◽  
YUE YANG

AbstractWe give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.


1994 ◽  
Vol 59 (4) ◽  
pp. 1301-1325 ◽  
Author(s):  
Tamara Lakins Hummel

AbstractRamsey's Theorem states that if P is a partition of [ω]k into finitely many partition classes, then there exists an infinite set of natural numbers which is homogeneous for P. We consider the degrees of unsolvability and arithmetical definability properties of infinite homogeneous sets for recursive partitions. We give Jockusch's proof of Seetapun's recent theorem that for all recursive partitions of [ω]2 into finitely many pieces, there exists an infinite homogeneous set A such that ∅′ ≰TA. Two technical extensions of this result are given, establishing arithmetical bounds for such a set A. Applications to reverse mathematics and introreducible sets are discussed.


Sign in / Sign up

Export Citation Format

Share Document