Effective versions of Ramsey's Theorem: Avoiding the cone above 0′

1994 ◽  
Vol 59 (4) ◽  
pp. 1301-1325 ◽  
Author(s):  
Tamara Lakins Hummel

AbstractRamsey's Theorem states that if P is a partition of [ω]k into finitely many partition classes, then there exists an infinite set of natural numbers which is homogeneous for P. We consider the degrees of unsolvability and arithmetical definability properties of infinite homogeneous sets for recursive partitions. We give Jockusch's proof of Seetapun's recent theorem that for all recursive partitions of [ω]2 into finitely many pieces, there exists an infinite homogeneous set A such that ∅′ ≰TA. Two technical extensions of this result are given, establishing arithmetical bounds for such a set A. Applications to reverse mathematics and introreducible sets are discussed.


1999 ◽  
Vol 64 (2) ◽  
pp. 489-516 ◽  
Author(s):  
Tamara Hummel ◽  
Carl G. Jockusch

AbstractWe study some generalized notions of cohesiveness which arise naturally in connection with effective versions of Ramsey's Theorem. An infinite set A of natural numbers is n-cohesive (respectively, n-r-cohesive) if A is almost homogeneous for every computably enumerable (respectively, computable) 2-coloring of the n-element sets of natural numbers. (Thus the 1-cohesive and 1-r-cohesive sets coincide with the cohesive and r-cohesive sets, respectively.) We consider the degrees of unsolvability and arithmetical definability levels of n-cohesive and n-r-cohesive sets. For example, we show that for all n ≥ 2, there exists a n-cohesive set. We improve this result for n = 2 by showing that there is a 2-cohesive set. We show that the n-cohesive and n-r-cohesive degrees together form a linear, non-collapsing hierarchy of degrees for n ≥ 2. In addition, for n ≥ 2 we characterize the jumps of n-cohesive degrees as exactly the degrees ≥ 0(n+1) and also characterize the jumps of the n-r-cohesive degrees.



2016 ◽  
Vol 22 (2) ◽  
pp. 151-169 ◽  
Author(s):  
LUDOVIC PATEY

AbstractRamsey’s theorem states that for any coloring of then-element subsets of ℕ with finitely many colors, there is an infinite setHsuch that alln-element subsets ofHhave the same color. The strength of consequences of Ramsey’s theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey’s theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey’s theorem.



2001 ◽  
Vol 66 (1) ◽  
pp. 1-55 ◽  
Author(s):  
Peter A. Cholak ◽  
Carl G. Jockusch ◽  
Theodore A. Slaman

AbstractWe study the proof–theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RTkn denote Ramsey's theorem for k–colorings of n–element sets, and let RT<∞n denote (∀k)RTkn. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X″ ≤T 0(n). Let IΣn and BΣn denote the Σn induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models of arithmetic enables us to show that RCA0 + IΣ2 + RT22 is conservative over RCA0 + IΣ2 for Π11 statements and that RCA0 + IΣ3 + RT<∞2 is Π11-conservative over RCA0 + IΣ3. It follows that RCA0 + RT22 does not imply BΣ3. In contrast, J. Hirst showed that RCA0 + RT<∞2 does imply BΣ3, and we include a proof of a slightly strengthened version of this result. It follows that RT<∞2 is strictly stronger than RT22 over RCA0.



2007 ◽  
Vol 72 (1) ◽  
pp. 171-206 ◽  
Author(s):  
Denis R. Hirschfeldt ◽  
Richard A. Shore

AbstractWe investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs () splits into a stable version () and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for and ). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL0, DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is -conservative over the base system RCA0. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch. Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply (and so does not imply ). This answers a question of Cholak, Jockusch, and Slaman.Our proofs suggest that the essential distinction between ADS and CAC on the one hand and on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.



2012 ◽  
Vol 77 (4) ◽  
pp. 1272-1280 ◽  
Author(s):  
Stephen Flood

AbstractIn this paper, we propose a weak regularity principle which is similar to both weak König's lemma and Ramsey's theorem. We begin by studying the computational strength of this principle in the context of reverse mathematics. We then analyze different ways of generalizing this principle.



2009 ◽  
Vol 74 (2) ◽  
pp. 557-578 ◽  
Author(s):  
Damir D. Dzhafarov ◽  
Carl G. Jockusch

AbstractIt was shown by Cholak, Jockusch, and Slaman that every computable 2-coloring of pairs admits an infinite low2 homogeneous set H. We answer a question of the same authors by showing that H may be chosen to satisfy in addition C ≰rH, where C is a given noncomputable set. This is shown by analyzing a new and simplified proof of Seetapun's cone avoidance theorem for Ramsey's theorem. We then extend the result to show that every computable 2-coloring of pairs admits a pair of low2 infinite homogeneous sets whose degrees form a minimal pair.



1975 ◽  
Vol 40 (3) ◽  
pp. 317-320 ◽  
Author(s):  
Julia F. Knight

In [4] it is shown that if the structure omits a type Σ, and Σ is complete with respect to Th(), then there is a proper elementary extension of which omits Σ. This result is extended in the present paper. It is shown that Th() has models omitting Σ in all infinite powers.A type is a countable set of formulas with just the variable ν occurring free. A structure is said to omit the type Σ if no element of satisfies all of the formulas of Σ. A type Σ, in the same language as a theory T, is said to be complete with respect to T if (1) T ∪ Σ is consistent, and (2) for every formula φ(ν) of the language of T (with just ν free), either φ or ¬φ is in Σ.The proof of the result of this paper resembles Morley's proof [5] that the Hanf number for omitting types is . It is shown that there is a model of Th() which omits Σ and contains an infinite set of indiscernibles. Where Morley used the Erdös-Rado generalization of Ramsey's theorem, a definable version of the ordinary Ramsey's theorem is used here.The “omitting types” version of the ω-completeness theorem ([1], [3], [6]) is used, as it was in Morley's proof and in [4]. In [4], satisfaction of the hypotheses of the ω-completeness theorem followed from the fact that, in , any infinite, definable set can be split into two infinite, definable sets.



1978 ◽  
Vol 43 (1) ◽  
pp. 135-138 ◽  
Author(s):  
Stephen G. Simpson

Let A be a subset of ω, the set of natural numbers. The degree of A is its degree of recursive unsolvability. We say that A is rich if every degree above that of A is represented by a subset of A. We say that A is poor if no degree strictly above that of A is represented by a subset of A. The existence of infinite poor (and hence nonrich) sets was proved by Soare [9].Theorem 1. Suppose that A is infinite and not rich. Then every hyperarith-metical subset H of ω is recursive in A.In the special case when H is arithmetical, Theorem 1 was proved by Jockusch [4] who employed a degree-theoretic analysis of Ramsey's theorem [3]. In our proof of Theorem 1 we employ a similar, degree-theoretic analysis of a certain generalization of Ramsey's theorem. The generalization of Ramsey's theorem is due to Nash-Williams [6]. If A ⊆ ω we write [A]ω for the set of all infinite subsets of A. If P ⊆ [ω]ω we let H(P) be the set of all infinite sets A such that either [A]ω ⊆ P = ∅. Nash-Williams' theorem is essentially the statement that if P ⊆ [ω]ω is clopen (in the usual, Baire topology on [ω]ω) then H(P) is nonempty. Subsequent, further generalizations of Ramsey's theorem were proved by Galvin and Prikry [1], Silver [8], Mathias [5], and analyzed degree-theoretically by Solovay [10]; those results are not needed for this paper.



2009 ◽  
Vol 74 (1) ◽  
pp. 201-215 ◽  
Author(s):  
Jennifer Chubb ◽  
Jeffry L. Hirst ◽  
Timothy H. McNicholl

AbstractWe examine the reverse mathematics and computability theory of a form of Ramsey's theorem in which the linear n-tuples of a binary tree are colored.



2013 ◽  
Vol 13 (02) ◽  
pp. 1350007 ◽  
Author(s):  
MANUEL LERMAN ◽  
REED SOLOMON ◽  
HENRY TOWSNER

In recent years, there has been a substantial amount of work in reverse mathematics concerning natural mathematical principles that are provable from RT, Ramsey's Theorem for Pairs. These principles tend to fall outside of the "big five" systems of reverse mathematics and a complicated picture of subsystems below RT has emerged. In this paper, we answer two open questions concerning these subsystems, specifically that ADS is not equivalent to CAC and that EM is not equivalent to RT.



Sign in / Sign up

Export Citation Format

Share Document