A NEW FAULT-TOLERANT BROADCAST ROUTING ALGORITHM ON MESH NETWORKS

2010 ◽  
Vol 11 (03n04) ◽  
pp. 175-187 ◽  
Author(s):  
GAOCAI WANG ◽  
JIANER CHEN ◽  
CHUANG LIN

Mesh networks are a kind of very important network topologies in massively multicomputer parallel systems. One-to-all or broadcast communication is one of the most important routing patterns and can be applied in many important applications. With the continuous increment in network size, routing in large size mesh networks with faults is unavoidable. In this paper, we propose a new fault-tolerant, local-information-based, and distributed broadcast routing algorithm based on the concept of k-submesh in all-port mesh networks. We suppose that each node has independent failure probability, under the assumption, we analyze the fault tolerance of our algorithm. We show that our routing algorithm is highly fault tolerant and has a high success probability to broadcast messages. For example, we formally prove that if the node failure probability is bounded by 0.12%, our broadcast routing algorithm works successfully with probability at least 99%. Simulation results show that our algorithm is efficient and effective in practice and theory, and the time steps of our algorithm is very close to the optimum.

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Yi Yang ◽  
Meirun Chen ◽  
Hao Li ◽  
Lian Li

This paper mainly focuses on routing in two-dimensional mesh networks. We propose a novel faulty block model, which is cracky rectangular block, for fault-tolerant adaptive routing. All the faulty nodes and faulty links are surrounded in this type of block, which is a convex structure, in order to avoid routing livelock. Additionally, the model constructs the interior spanning forest for each block in order to keep in touch with the nodes inside of each block. The procedure for block construction is dynamically and totally distributed. The construction algorithm is simple and ease of implementation. And this is a fully adaptive block which will dynamically adjust its scale in accordance with the situation of networks, either the fault emergence or the fault recovery, without shutdown of the system. Based on this model, we also develop a distributed fault-tolerant routing algorithm. Then we give the formal proof for this algorithm to guarantee that messages will always reach their destinations if and only if the destination nodes keep connecting with these mesh networks. So the new model and routing algorithm maximize the availability of the nodes in networks. This is a noticeable overall improvement of fault tolerability of the system.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450146 ◽  
Author(s):  
SALEH FAKHRALI ◽  
HAMID R. ZARANDI

This paper presents a hierarchical fault-tolerant routing algorithm called FXY, which is a hybrid method based on flooding and XY, and can balance performance and fault tolerance based on a predefined parameter m. First, FXY partitions the whole network into different equal size square submeshes with the size of m × m. At the first level of the hierarchy, packet routing within these submeshes is performed based on flooding routing algorithm. When the packets are received at effective boundary of each submesh, XY routing is performed to route the packet inter submeshes i.e., from one submesh to the neighbor submesh which is certainly one of its neighbor nodes. Here, the size of the submesh is defined as fault-tolerant granularity. As fault-tolerant granularity is increased, the size of the submeshes will be increased, therefore the method mainly floods packets in large-size submeshes and finally packets are received at their destinations correctly. On the other hand, when fault-tolerant granularity is decreased, the method mainly routes packets as XY method, which is not fault-tolerant, but has the best performance. The method is evaluated for various packet injection rates and fault rates. The experimental results reveal that the method presents a fault-tolerant routing algorithm, and can be adjusted so that it shows better fault-tolerance and performance trade-offs compared to XY and flooding which are two end-to-end cases of having the best performance and no fault-tolerance, having the least performance and the best fault tolerance, respectively. The experimental results for an 8 × 8 NoC size, have shown that 2-FXY, which is the proposed method with fault-tolerant granularity of two, offers the best trade-off between performance and fault tolerance compared to other methods, XY, flooding and probabilistic flooding.


2009 ◽  
Vol 28 (11) ◽  
pp. 2788-2790 ◽  
Author(s):  
Fang WANG ◽  
Qiao-lin CHAI ◽  
Yan-li BAN

Sign in / Sign up

Export Citation Format

Share Document