Reflected stochastic partial differential equations with jumps

2021 ◽  
pp. 2250002
Author(s):  
Hongchao Qian ◽  
Jun Peng

In this paper, we establish the existence and uniqueness of solutions of reflected stochastic partial differential equations (SPDEs) driven both by Brownian motion and by Poisson random measure in a convex domain. Penalization method plays a crucial role.

2020 ◽  
Vol 23 (1) ◽  
pp. 224-249
Author(s):  
Xiangqian Meng ◽  
Erkan Nane

AbstractWe consider non-linear time-fractional stochastic heat type equation$$\begin{array}{} \displaystyle \frac{\partial^\beta u}{\partial t^\beta}+\nu(-\Delta)^{\alpha/2} u = I^{1-\beta}_t \bigg[\int_{\mathbb{R}^d}\sigma(u(t,x),h) \stackrel{\cdot}{\tilde N }(t,x,h)\bigg] \end{array} $$and$$\begin{array}{} \displaystyle \frac{\partial^\beta u}{\partial t^\beta}+\nu(-\Delta)^{\alpha/2} u = I^{1-\beta}_t \bigg[\int_{\mathbb{R}^d}\sigma(u(t,x),h)\stackrel{\cdot}{N }(t,x,h)\bigg] \end{array} $$in (d + 1) dimensions, where α ∈ (0, 2] and d < min{2, β−1}α, ν > 0, $\begin{array}{} \partial^\beta_t \end{array} $ is the Caputo fractional derivative, −(−Δ)α/2 is the generator of an isotropic stable process, $\begin{array}{} I^{1-\beta}_t \end{array} $ is the fractional integral operator, N(t, x) are Poisson random measure with Ñ(t, x) being the compensated Poisson random measure. σ : ℝ → ℝ is a Lipschitz continuous function. We prove existence and uniqueness of mild solutions to this equation. Our results extend the results in the case of parabolic stochastic partial differential equations obtained in [16, 33]. Under the linear growth of σ, we show that the solution of the time fractional stochastic partial differential equation follows an exponential growth with respect to the time. We also show the nonexistence of the random field solution of both stochastic partial differential equations when σ grows faster than linear.


Author(s):  
FULVIA CONFORTOLA

We prove an existence and uniqueness result for a class of backward stochastic differential equations (BSDE) with dissipative drift in Hilbert spaces. We also give examples of stochastic partial differential equations which can be solved with our result.


Sign in / Sign up

Export Citation Format

Share Document