FUNDAMENTAL GROUPS AND PRESENTATIONS OF ALGEBRAS

2006 ◽  
Vol 05 (05) ◽  
pp. 549-562 ◽  
Author(s):  
JUAN CARLOS BUSTAMANTE ◽  
DIANE CASTONGUAY

In this note, we investigate how different fundamental groups of presentations of a fixed algebra A can be. For finitely many finitely presented groups Gi, we construct an algebra A such that all Gi appear as fundamental groups of presentations of A.

2019 ◽  
Vol 150 (3) ◽  
pp. 1139-1154
Author(s):  
Thiebout Delabie ◽  
Ana Khukhro

AbstractWe use a coarse version of the fundamental group first introduced by Barcelo, Kramer, Laubenbacher and Weaver to show that box spaces of finitely presented groups detect the normal subgroups used to construct the box space, up to isomorphism. As a consequence, we have that two finitely presented groups admit coarsely equivalent box spaces if and only if they are commensurable via normal subgroups. We also provide an example of two filtrations (Ni) and (Mi) of a free group F such that Mi > Ni for all i with [Mi:Ni] uniformly bounded, but with $\squ _{(N_i)}F$ not coarsely equivalent to $\squ _{(M_i)}F$. Finally, we give some applications of the main theorem for rank gradient and the first ℓ2 Betti number, and show that the main theorem can be used to construct infinitely many coarse equivalence classes of box spaces with various properties.


Author(s):  
F. E. A. Johnson ◽  
E. G. Rees

The class of fundamental groups of non-singular complex projective varieties is an interesting, but as yet imperfectly understood, class of finitely presented groups. Membership of is known to be extremely restricted (see [22, 23]). In this paper, we employ geometrical rigidity properties to realize some group extensions as elements of as in our previous papers, we find it convenient to work simultaneously with the class ℋ of fundamental groups of compact Kähler manifolds.


2019 ◽  
Vol 72 (6) ◽  
pp. 1529-1550
Author(s):  
Michael L. Mihalik

AbstractA well-known conjecture is that all finitely presented groups have semistable fundamental groups at infinity. A class of groups whose members have not been shown to be semistable at infinity is the class ${\mathcal{A}}$ of finitely presented groups that are ascending HNN-extensions with finitely generated base. The class ${\mathcal{A}}$ naturally partitions into two non-empty subclasses, those that have “bounded” and “unbounded” depth. Using new methods introduced in a companion paper we show those of bounded depth have semistable fundamental group at infinity. Ascending HNN extensions produced by Ol’shanskii–Sapir and Grigorchuk (for other reasons), and once considered potential non-semistable examples are shown to have bounded depth. Finally, we devise a technique for producing explicit examples with unbounded depth. These examples are perhaps the best candidates to date in the search for a group with non-semistable fundamental group at infinity.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


2017 ◽  
Vol 11 (1) ◽  
pp. 291-310
Author(s):  
Daniele Ettore Otera ◽  
Valentin Poénaru

Sign in / Sign up

Export Citation Format

Share Document