Bounded Depth Ascending HNN Extensions and -Semistability at infinity

2019 ◽  
Vol 72 (6) ◽  
pp. 1529-1550
Author(s):  
Michael L. Mihalik

AbstractA well-known conjecture is that all finitely presented groups have semistable fundamental groups at infinity. A class of groups whose members have not been shown to be semistable at infinity is the class ${\mathcal{A}}$ of finitely presented groups that are ascending HNN-extensions with finitely generated base. The class ${\mathcal{A}}$ naturally partitions into two non-empty subclasses, those that have “bounded” and “unbounded” depth. Using new methods introduced in a companion paper we show those of bounded depth have semistable fundamental group at infinity. Ascending HNN extensions produced by Ol’shanskii–Sapir and Grigorchuk (for other reasons), and once considered potential non-semistable examples are shown to have bounded depth. Finally, we devise a technique for producing explicit examples with unbounded depth. These examples are perhaps the best candidates to date in the search for a group with non-semistable fundamental group at infinity.

2019 ◽  
Vol 72 (5) ◽  
pp. 1275-1303 ◽  
Author(s):  
Ross Geoghegan ◽  
Craig Guilbault ◽  
Michael Mihalik

AbstractA finitely presented 1-ended group $G$ has semistable fundamental group at infinity if $G$ acts geometrically on a simply connected and locally compact ANR $Y$ having the property that any two proper rays in $Y$ are properly homotopic. This property of $Y$ captures a notion of connectivity at infinity stronger than “1-ended”, and is in fact a feature of $G$, being independent of choices. It is a fundamental property in the homotopical study of finitely presented groups. While many important classes of groups have been shown to have semistable fundamental group at infinity, the question of whether every $G$ has this property has been a recognized open question for nearly forty years. In this paper we attack the problem by considering a proper but non-cocompact action of a group $J$ on such an $Y$. This $J$ would typically be a subgroup of infinite index in the geometrically acting over-group $G$; for example $J$ might be infinite cyclic or some other subgroup whose semistability properties are known. We divide the semistability property of $G$ into a $J$-part and a “perpendicular to $J$” part, and we analyze how these two parts fit together. Among other things, this analysis leads to a proof (in a companion paper) that a class of groups previously considered to be likely counter examples do in fact have the semistability property.


2019 ◽  
Vol 150 (3) ◽  
pp. 1139-1154
Author(s):  
Thiebout Delabie ◽  
Ana Khukhro

AbstractWe use a coarse version of the fundamental group first introduced by Barcelo, Kramer, Laubenbacher and Weaver to show that box spaces of finitely presented groups detect the normal subgroups used to construct the box space, up to isomorphism. As a consequence, we have that two finitely presented groups admit coarsely equivalent box spaces if and only if they are commensurable via normal subgroups. We also provide an example of two filtrations (Ni) and (Mi) of a free group F such that Mi > Ni for all i with [Mi:Ni] uniformly bounded, but with $\squ _{(N_i)}F$ not coarsely equivalent to $\squ _{(M_i)}F$. Finally, we give some applications of the main theorem for rank gradient and the first ℓ2 Betti number, and show that the main theorem can be used to construct infinitely many coarse equivalence classes of box spaces with various properties.


Author(s):  
David E. Galewski

0. Introduction. A group π has weak dimension (wd) ≤ n (see Cartan and Ellen-berg (2)) if Hk(π, A) = 0 for all right Z(π)-modules A and all k > n. We say that the weak dimension of a manifold M is ≤ n if wd (πl(M))≤ n. In section 1 we show that open, orientable, irreducible 3-manifolds have wd ≤ 1 if and only if they are the monotone on of 1-handle bodies. In his celebrated theorem (10), Stallings proves that finitely presented groups of cohomological dimensions ≤ 1 are free. In section 2 we prove that if π is a finitely presented group which is the fundamental group of any orientable 3-manifold with wd ≤ 1 then π is free. We also give an example to show that the finite generation of π is necessary. (Swan (11) removes the finitely presented hypothesis from Stalling's theorem.) Finally, in section 3 we generalize a theorem of McMillan (5) and prove that if M is an open, orientable, irreducible 3-manifold with finitely generated fundamental group, then M is stably (taking the product with n ≥ 1 copies of ℝ) a connected sum along the boundary of trivial (n+2)-disc Sl bundles.


1985 ◽  
Vol 50 (3) ◽  
pp. 743-772 ◽  
Author(s):  
Fritz Grunewald ◽  
Daniel Segal

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.


2003 ◽  
Vol 13 (03) ◽  
pp. 287-302 ◽  
Author(s):  
André Nies

For various proper inclusions of classes of groups [Formula: see text], we obtain a group [Formula: see text] and a first-order sentence φ such that H⊨φ but no G∈ C satisfies φ. The classes we consider include the finite, finitely presented, finitely generated with and without solvable word problem, and all countable groups. For one separation, we give an example of a f.g. group, namely ℤp ≀ ℤ for some prime p, which is the only f.g. group satisfying an appropriate first-order sentence. A further example of such a group, the free step-2 nilpotent group of rank 2, is used to show that true arithmetic Th(ℕ,+,×) can be interpreted in the theory of the class of finitely presented groups and other classes of f.g. groups.


2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Benjamin Fine ◽  
Anthony Gaglione ◽  
Gerhard Rosenberger ◽  
Dennis Spellman

AbstractIn this paper we survey and reflect upon several aspects of the theory of infinite finitely generated and finitely presented groups that were originally motivated by work of Gilbert Baumslag. All but the last of the topics we have chosen are all related in one way or another to the theory of limit groups and the solution of the Tarski problems. These include the residually free and fully residually free properties and the big powers condition; Baumslag doubles and extensions of centralizers; residually-𝒳 groups and extensions of results of Benjamin Baumslag and finally the relationship between CT and CSA groups.


2019 ◽  
pp. 1-16
Author(s):  
Khalid Bou-Rabee ◽  
Daniel Studenmund

Let [Formula: see text] be the fundamental group of a surface of finite type and [Formula: see text] be its abstract commensurator. Then [Formula: see text] contains the solvable Baumslag–Solitar groups [Formula: see text] for any [Formula: see text]. Moreover, the Baumslag–Solitar group [Formula: see text] has an image in [Formula: see text] that is not residually finite. Our proofs are computer-assisted. Our results also illustrate that finitely-generated subgroups of [Formula: see text] are concrete objects amenable to computational methods. For example, we give a proof that [Formula: see text] is not residually finite without the use of normal forms of HNN extensions.


2006 ◽  
Vol 05 (05) ◽  
pp. 549-562 ◽  
Author(s):  
JUAN CARLOS BUSTAMANTE ◽  
DIANE CASTONGUAY

In this note, we investigate how different fundamental groups of presentations of a fixed algebra A can be. For finitely many finitely presented groups Gi, we construct an algebra A such that all Gi appear as fundamental groups of presentations of A.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Oleg Bogopolski

AbstractWe generalize a well-known periodicity lemma from the case of free groups to the case of acylindrically hyperbolic groups. This generalization has been used to describe solutions of certain equations in acylindrically hyperbolic groups and to characterize verbally closed finitely generated acylindrically hyperbolic subgroups of finitely presented groups.


Sign in / Sign up

Export Citation Format

Share Document