SUM OF ELEMENT ORDERS ON FINITE GROUPS OF THE SAME ORDER

2011 ◽  
Vol 10 (02) ◽  
pp. 187-190 ◽  
Author(s):  
H. AMIRI ◽  
S. M. JAFARIAN AMIRI

For a finite group G, let ψ(G) denote the sum of element orders of G. It is known that the maximum value of ψ on the set of groups of order n, where n is a positive integer, will occur at the cyclic group Cn. In this paper, we investigate the minimum value of ψ on the set of groups of the same order.

Author(s):  
Marcel Herzog ◽  
Patrizia Longobardi ◽  
Mercede Maj

For a finite group [Formula: see text], let [Formula: see text] denote the sum of element orders of [Formula: see text]. If [Formula: see text] is a positive integer let [Formula: see text] be the cyclic group of order [Formula: see text]. It is known that [Formula: see text] is the maximum value of [Formula: see text] on the set of groups of order [Formula: see text], and [Formula: see text] if and only if [Formula: see text] is cyclic of order [Formula: see text]. In this paper, we investigate the second largest value of [Formula: see text] on the set of groups of order [Formula: see text] and the structure of groups [Formula: see text] of order [Formula: see text] with this value of [Formula: see text] when [Formula: see text] is odd.


2021 ◽  
Vol 71 (3) ◽  
pp. 627-630
Author(s):  
Marius Tărnăuceanu

Abstract Let G be a finite group and let ψ(G) denote the sum of element orders of G. It is well-known that the maximum value of ψ on the set of groups of order n, where n is a positive integer, will occur at the cyclic group Cn . For nilpotent groups, we prove a natural generalization of this result, obtained by replacing the element orders of G with the element orders relative to a certain subgroup H of G.


Author(s):  
MIHAI-SILVIU LAZOREC ◽  
RULIN SHEN ◽  
MARIUS TĂRNĂUCEANU

Let $C(G)$ be the poset of cyclic subgroups of a finite group $G$ and let $\mathscr{P}$ be the class of $p$ -groups of order  $p^{n}$ ( $n\geq 3$ ). Consider the function $\unicode[STIX]{x1D6FC}:\mathscr{P}\longrightarrow (0,1]$ given by $\unicode[STIX]{x1D6FC}(G)=|C(G)|/|G|$ . In this paper, we determine the second minimum value of  $\unicode[STIX]{x1D6FC}$ , as well as the corresponding minimum points. Since the problem of finding the second maximum value of $\unicode[STIX]{x1D6FC}$ has been solved for $p=2$ , we focus on the case of odd primes in determining the second maximum.


2019 ◽  
Vol 22 (3) ◽  
pp. 529-544
Author(s):  
Lijian An

Abstract A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer {w\geq 3} , a quasi-antichain of width w is denoted by {\mathcal{M}_{w}} . In [B. Brewster, P. Hauck and E. Wilcox, Quasi-antichain Chermak–Delgado lattice of finite groups, Arch. Math. 103 2014, 4, 301–311], it is proved that {\mathcal{M}_{w}} can be the Chermak–Delgado lattice of a finite group if and only if {w=1+p^{a}} for some positive integer a and some prime p. Let t be the number of abelian atoms in {\mathcal{CD}(G)} . In this paper, we completely answer the following question: which values of t are possible in quasi-antichain Chermak–Delgado lattices?


Author(s):  
MORTEZA BANIASAD AZAD ◽  
BEHROOZ KHOSRAVI

For a finite group $G$ , define $l(G)=(\prod _{g\in G}o(g))^{1/|G|}/|G|$ , where $o(g)$ denotes the order of $g\in G$ . We prove that if $l(G)>l(A_{5}),l(G)>l(A_{4}),l(G)>l(S_{3}),l(G)>l(Q_{8})$ or $l(G)>l(C_{2}\times C_{2})$ , then $G$ is solvable, supersolvable, nilpotent, abelian or cyclic, respectively.


Author(s):  
Ramesh Prasad Panda ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a finite group [Formula: see text] is the undirected simple graph whose vertex set is [Formula: see text], in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer [Formula: see text], let [Formula: see text] denote the cyclic group of order [Formula: see text] and let [Formula: see text] be the number of distinct prime divisors of [Formula: see text]. The minimum degree [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [R. P. Panda and K. V. Krishna, On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups, Comm. Algebra 46(7) (2018) 3182–3197]. For [Formula: see text], under certain conditions involving the prime divisors of [Formula: see text], we identify at most [Formula: see text] vertices such that [Formula: see text] is equal to the degree of at least one of these vertices. If [Formula: see text], or that [Formula: see text] is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of [Formula: see text].


Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi ◽  
Morteza Jafarpour

Let [Formula: see text] be a finite group and [Formula: see text], where [Formula: see text] denotes the order of [Formula: see text]. The function [Formula: see text] was introduced by Tărnăuceanu. In [M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. (2020), https://doi.org/10.1007/s11856-020-2033-9 ], some lower bounds for [Formula: see text] are determined such that if [Formula: see text] is greater than each of them, then [Formula: see text] is cyclic, abelian, nilpotent, supersolvable and solvable. Also, an open problem aroused about finite groups [Formula: see text] such that [Formula: see text] is equal to the amount of each lower bound. In this paper, we give an answer to the equality condition which is a partial answer to the open problem posed by Tărnăuceanu. Also, in [M. Baniasad Azad and B. Khosravi, A criterion for p-nilpotency and p-closedness by the sum of element orders, Commun. Algebra (2020), https://doi.org/10.1080/00927872.2020.1788571 ], it is shown that: If [Formula: see text], where [Formula: see text] is a prime number, then [Formula: see text] and [Formula: see text] is cyclic. As the next result, we show that if [Formula: see text] is not a [Formula: see text]-nilpotent group and [Formula: see text], then [Formula: see text].


2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


2020 ◽  
Vol 27 (01) ◽  
pp. 131-136
Author(s):  
Elena V. Konstantinova ◽  
Daria Lytkina

We prove that the spectrum of a Cayley graph over a finite group with a normal generating set S containing with every its element s all generators of the cyclic group 〈s〉 is integral. In particular, a Cayley graph of a 2-group generated by a normal set of involutions is integral. We prove that a Cayley graph over the symmetric group of degree n no less than 2 generated by all transpositions is integral. We find the spectrum of a Cayley graph over the alternating group of degree n no less than 4 with a generating set of 3-cycles of the form (k i j) with fixed k, as {−n+1, 1−n+1, 22 −n+1, …, (n−1)2 −n+1}.


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


Sign in / Sign up

Export Citation Format

Share Document