The conditions (Ci) in modular lattices, and applications

2015 ◽  
Vol 15 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Toma Albu ◽  
Mihai Iosif ◽  
Adnan Tercan

In this paper, we introduce and investigate the latticial counterparts of the conditions (Ci), i = 1, 2, 3, 11, 12, for modules. In particular, we study the lattices satisfying the condition (C1), we call CC lattices (for Closed are Complements), i.e. the lattices such that any closed element is a complement, that are the latticial counterparts of CS modules (for Closed are Summands). Applications of these results are given to Grothendieck categories and module categories equipped with a torsion theory.

2004 ◽  
Vol 03 (04) ◽  
pp. 391-410 ◽  
Author(s):  
TOMA ALBU ◽  
MIHAI IOSIF ◽  
MARK L. TEPLY

A modular lattice L with 0 and 1 is called quotient finite dimensional (QFD) if [x,1] has no infinite independent set for any x∈L. We extend some results about QFD modules to upper continuous modular lattices by using Lemonnier's Lemma. One result says that QFD for a compactly generated lattice L is equivalent to Condition (C): for every m∈L, there exists a compact element t of L such that t∈[0,m] and [t,m[ has no maximal element. If L is not compactly generated, then QFD and (C) separate into two distinct conditions, which are analyzed and characterized for upper continuous modular lattices. We also extend to upper continuous modular lattices some characterizations of QFD modules with Gabriel dimension. Applications of these results are given to Grothendieck categories and module categories equipped with a torsion theory.


Author(s):  
Toma Albu ◽  
Patrick F. Smith

The Hopkins–Levitzki Theorem, discovered independently in 1939 by C. Hopkins and J. Levitzki states that a right Artinian ring with identity is right Noetherian. In the 1970s and 1980s it has been generalized to modules over non-unital rings by Shock[10], to modules satisfying the descending chain condition relative to a heriditary torsion theory by Miller-Teply[7], to Grothendieck categories by Năstăsescu [8], and to upper continuous modular lattices by Albu [1]. The importance of the relative Hopkins-Levitzki Theorem in investigating the structure of some relevant classes of modules, including injectives as well as projectives is revealed in [3] and [6], where the main body of both these monographs deals with this topic. A discussion on the various forms of the Hopkins–Levitzki Theorem for modules and Grothendieck categories and the connection between them may be found in [3].


2018 ◽  
Vol 25 (02) ◽  
pp. 285-294 ◽  
Author(s):  
Alejandro Alvarado-García ◽  
César Cejudo-Castilla ◽  
Hugo Alberto Rincón-Mejía ◽  
Ivan Fernando Vilchis-Montalvo ◽  
Manuel Gerardo Zorrilla-Noriega

Some properties of and relations between several (big) lattices of module classes are used in this paper to obtain information about the ring over which modules are taken. The authors reach characterizations of trivial rings, semisimple rings and certain rings over which every torsion theory is hereditary.


2007 ◽  
Vol 307 (2) ◽  
pp. 841-863 ◽  
Author(s):  
Riccardo Colpi ◽  
Enrico Gregorio ◽  
Francesca Mantese
Keyword(s):  

1985 ◽  
Vol 50 (3) ◽  
pp. 604-610
Author(s):  
Francoise Point

The starting point of this work was Saracino and Wood's description of the finitely generic abelian ordered groups [S-W].We generalize the result of Saracino and Wood to a class ∑UH of subdirect products of substructures of elements of a class ∑, which has some relationships with the discriminator variety V(∑t) generated by ∑. More precisely, let ∑ be an elementary class of L-algebras with theory T. Burris and Werner have shown that if ∑ has a model companion then the existentially closed models in the discriminator variety V(∑t) form an elementary class which they have axiomatized. In general it is not the case that the existentially closed elements of ∑UH form an elementary class. For instance, take for ∑ the class ∑0 of linearly ordered abelian groups (see [G-P]).We determine the finitely generic elements of ∑UH via the three following conditions on T:(1) There is an open L-formula which says in any element of ∑UH that the complement of equalizers do not overlap.(2) There is an existentially closed element of ∑UH which is an L-reduct of an element of V(∑t) and whose L-extensions respect the relationships between the complements of the equalizers.(3) For any models A, B of T, there exists a model C of TUH such that A and B embed in C.(Condition (3) is weaker then “T has the joint embedding property”. It is satisfied for example if every model of T has a one-element substructure. Condition (3) implies that ∑UH has the joint embedding property and therefore that the class of finitely generic elements of ∑UH is complete.)


2003 ◽  
Vol 99 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Heng Huat Chan ◽  
Kok Seng Chua ◽  
Patrick Solé

1987 ◽  
Vol 101 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Joseph P. S. Kung

AbstractLet and ℳ be subsets of a finite lattice L. is said to be concordant with ℳ if, for every element x in L, either x is in ℳ or there exists an element x+ such that (CS1) the Möbius function μ(x, x+) ≠ 0 and (CS2) for every element j in , x ∨ j ≠ x+. We prove that if is concordant with ℳ, then the incidence matrix I(ℳ | ) has maximum possible rank ||, and hence there exists an injection σ: → ℳ such that σ(j) ≥ j for all j in . Using this, we derive several rank and covering inequalities in finite lattices. Among the results are generalizations of the Dowling-Wilson inequalities and Dilworth's covering theorem to semimodular lattices, and a refinement of Dilworth's covering theorem for modular lattices.


1967 ◽  
Vol 63 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Judita Cofman

D. R. Hughes stated the following conjecture: If π is a finite projective plane satisfying the condition: (C)π contains a collineation group δ inducing a doubly transitive permutation group δ* on the points of a line g, fixed under δ, then the corresponding affine plane πg is a translation plane.


2021 ◽  
Vol 71 (3) ◽  
pp. 663-688
Author(s):  
Yuan Li ◽  
Hailou Yao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document