On the prime spectrum of an le-module

Author(s):  
M. Kumbhakar ◽  
A. K. Bhuniya

Here, we continue to characterize a recently introduced notion, le-modules [Formula: see text] over a commutative ring [Formula: see text] with unity [A. K. Bhuniya and M. Kumbhakar, Uniqueness of primary decompositions in Laskerian le-modules, Acta Math. Hunga. 158(1) (2019) 202–215]. This paper introduces and characterizes Zariski topology on the set Spec[Formula: see text] of all prime submodule elements of [Formula: see text]. Thus, we extend many results on Zariski topology for modules over a ring to le-modules. The topological space Spec[Formula: see text] is connected if and only if [Formula: see text] contains no idempotents other than [Formula: see text] and [Formula: see text]. Open sets in the Zariski topology for the quotient ring [Formula: see text] induces a base of quasi-compact open sets for the Zariski topology on Spec[Formula: see text]. Every irreducible closed subset of Spec[Formula: see text] has a generic point. Besides, we prove a number of different equivalent characterizations for Spec[Formula: see text] to be spectral.

Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3171-3180
Author(s):  
Dawood Hassanzadeh-Lelekaami

Let R be a commutative ring with identity and let M be an R-module. We investigate when the strongly prime spectrum of M has a Zariski topology analogous to that for R. We provide some examples of such modules.


Author(s):  
Alireza Abbasi ◽  
Mohammad Hasan Naderi

Let R be a commutative ring with identity and let M be an R-module. A proper submodule P of M is called a classical prime submodule if abm ∈ P, for a,b ∈ R, and m ∈ M, implies that am ∈ P or bm ∈ P. The classical prime spectrum of M, Cl.Spec(M), is defined to be the set of all classical prime submodules of M. We say M is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)), defined by ψ(P) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this paper, we study classical primeful modules as a generalisation of primeful modules. Also we investigate some properties of a topology that is defined on Cl.Spec(M), named the Zariski topology.


1971 ◽  
Vol 23 (5) ◽  
pp. 749-758 ◽  
Author(s):  
M. Hochster

We call a topological space X minspectral if it is homeomorphic to the space of minimal prime ideals of a commutative ring A in the usual (hull-kernel or Zariski) topology (see [2, p. 111]). Note that if A has an identity, is a subspace of Spec A (as defined in [1, p. 124]). It is well known that a minspectral space is Hausdorff and has a clopen basis (and hence is completely regular). We give here a topological characterization of the minspectral spaces, and we show that all minspectral spaces can actually be obtained from rings with identity and that open (but not closed) subspaces of minspectral spaces are minspectral (Theorem 1, Proposition 5).


2021 ◽  
Vol 78 (1) ◽  
pp. 215-224
Author(s):  
Malik Bataineh ◽  
Azzh Saad Alshehry ◽  
Rashid Abu-Dawwas

Abstract In this paper, we show there are strong relations between the algebraic properties of a graded commutative ring R and topological properties of open subsets of Zariski topology on the graded prime spectrum of R. We examine some algebraic conditions for open subsets of Zariski topology to become quasi-compact, dense, and irreducible. We also present a characterization for the radical of a graded ideal in R by using topological properties.


2021 ◽  
Vol 10 (11) ◽  
pp. 3479-3489
Author(s):  
K. Al-Zoubi ◽  
M. Al-Azaizeh

Let $G$ be an abelian group with identity $e$. Let $R$ be a $G$-graded commutative ring with identity, $M$ a graded $R$-module and $S\subseteq h(R)$ a multiplicatively closed subset of $R$. In this paper, we introduce the concept of graded $S$-prime submodules of graded modules over graded commutative rings. We investigate some properties of this class of graded submodules and their homogeneous components. Let $N$ be a graded submodule of $M$ such that $(N:_{R}M)\cap S=\emptyset $. We say that $N$ is \textit{a graded }$S$\textit{-prime submodule of }$M$ if there exists $s_{g}\in S$ and whenever $a_{h}m_{i}\in N,$ then either $s_{g}a_{h}\in (N:_{R}M)$ or $s_{g}m_{i}\in N$ for each $a_{h}\in h(R) $ and $m_{i}\in h(M).$


2014 ◽  
Vol 21 (04) ◽  
pp. 671-688 ◽  
Author(s):  
H. Ansari-Toroghy ◽  
F. Farshadifar

Let R be a commutative ring and M be an R-module. The second spectrum Spec s(M) of M is the collection of all second submodules of M. We topologize Spec s(M) with Zariski topology, which is analogous to that for Spec (M), and investigate this topological space. For various types of modules M, we obtain conditions under which Spec s(M) is a spectral space. We also investigate Spec s(M) with quasi-Zariski topology.


1977 ◽  
Vol 29 (4) ◽  
pp. 722-737 ◽  
Author(s):  
Monte B. Boisen ◽  
Philip B. Sheldon

Throughout this paper the term ring will denote a commutative ring with unity and the term integral domain will denote a ring having no nonzero divisors of zero. The set of all prime ideals of a ring R can be viewed as a topological space, called the prime spectrum of R, and abbreviated Spec (R), where the topology used is the Zariski topology [1, Definition 4, § 4.3, p. 99]. The set of all prime ideals of R can also be viewed simply as aposet - that is, a partially ordered set - with respect to set inclusion. We will use the phrase the pospec of R, or just Pospec (/v), to refer to this partially ordered set.


2019 ◽  
Vol 18 (06) ◽  
pp. 1950110
Author(s):  
Esmaeil Rostami ◽  
Masoumeh Hedayati ◽  
Nosratollah Shajareh Poursalavati

In this paper, we investigate connections between some algebraic properties of commutative rings and topological properties of their minimal and maximal prime spectrum with respect to the flat topology. We show that for a commutative ring [Formula: see text], the ascending chain condition on principal annihilator ideals of [Formula: see text] holds if and only if [Formula: see text] is a Noetherian topological space as a subspace of [Formula: see text] with respect to the flat topology and we give a characterization for a topological space [Formula: see text] for which [Formula: see text] is a Noetherian topological space as a subspace of [Formula: see text] with respect to the flat topology. Also, we give a characterization for rings whose maximal prime spectrum is a compact topological space with respect to the flat topology. Some other results are obtained too.


2018 ◽  
Vol 26 (4) ◽  
pp. 277-283
Author(s):  
Yasushige Watase

Summary We formalize in the Mizar system [3], [4] basic definitions of commutative ring theory such as prime spectrum, nilradical, Jacobson radical, local ring, and semi-local ring [5], [6], then formalize proofs of some related theorems along with the first chapter of [1]. The article introduces the so-called Zariski topology. The set of all prime ideals of a commutative ring A is called the prime spectrum of A denoted by Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A a topological space. A different role is given to Spec as a map from a ring morphism of commutative rings to that of topological spaces by the following manner: for a ring homomorphism h : A → B, we defined (Spec h) : Spec B → Spec A by (Spec h)(𝔭) = h−1(𝔭) where 𝔭 2 Spec B.


2017 ◽  
Vol 37 (1) ◽  
pp. 153-168
Author(s):  
Hosein Fazaeli Moghimi ◽  
Batool Zarei Jalal Abadi

‎Let $R$ be a commutative ring with identity‎, ‎and $n\geq 1$ an integer‎. ‎A proper submodule $N$ of an $R$-module $M$ is called‎ ‎an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1‎, ‎\ldots‎ , ‎a_{n+1}\in R$ and $m\in M$‎, ‎then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$‎. ‎In this paper‎, ‎we study $n$-prime submodules as a generalization of prime submodules‎. ‎Among other results‎, ‎it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$‎, ‎then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$‎.


Sign in / Sign up

Export Citation Format

Share Document