CHEMICAL REACTIONS IN THE O(1D) + HCl SYSTEM III.
Using the accurate global potential energy surfaces for the 11A′′ and 21A′ states reported in the previous sister Paper I, detailed quantum dynamics calculations are performed for these adiabatic surfaces separately for J = 0 (J: total angular momentum quantum number). In addition to the significant overall contributions of these states to the title reactions reported in the second Paper II of this series, quantum dynamics on these excited potential energy surfaces (PES) are clarified in terms of the PES topographies, which are quite different from that of the ground PES. The reaction mechanisms are found to be strongly selective and nicely explained as vibrationally nonadiabatic transitions in the vicinity of potential ridge.