HYDRATION AND DISSOCIATION OF CALCIUM HYDROXIDE IN WATER CLUSTERS: A QUANTUM CHEMICAL STUDY

2007 ◽  
Vol 06 (03) ◽  
pp. 595-609 ◽  
Author(s):  
CLARA JIAYUN MEN ◽  
FU-MING TAO

The structure, stability, and properties of the hydrated clusters of calcium hydroxide, Ca ( OH )2( H 2 O )n, n = 1–6, were investigated using density functional and ab initio quantum chemical methods. The results show that six water molecules are needed to result in the complete dissociation of Ca ( OH )2. The stable and ionic conformer of Ca ( OH )2( H 2 O )6 has C 3 symmetry. Its surprising stability and high IR activity render hydrated clusters of Ca ( OH )2 potentially significant in the nucleation of noctilucent clouds in the mesosphere. Trends in the interaction energies (ΔEe) of the complexes show that water molecules in the first shell of Ca 2+ are highly stable, further alluding to the role of hydrated Ca ( OH )2 in aerosol formation.

Author(s):  
Keshav Kumar Singh ◽  
Poonam Tandon ◽  
Alka Misra ◽  
Shivani ◽  
Manisha Yadav ◽  
...  

Abstract The formation mechanism of linear and isopropyl cyanide (hereafter n-PrCN and i-PrCN, respectively) in the interstellar medium (ISM) has been proposed from the reaction between some previously detected small cyanides/cyanide radicals and hydrocarbons/hydrocarbon radicals. n-PrCN and i-PrCN are nitriles therefore, they can be precursors of amino acids via Strecker synthesis. The chemistry of i-PrCN is especially important since it is the first and only branched molecule in ISM, hence, it could be a precursor of branched amino acids such as leucine, isoleucine, etc. Therefore, both n-PrCN and i-PrCN have significant astrobiological importance. To study the formation of n-PrCN and i-PrCN in ISM, quantum chemical calculations have been performed using density functional theory at the MP2/6-311++G(2d,p)//M062X/6-311+G(2d,p) level. All the proposed reactions have been studied in the gas phase and the interstellar water ice. It is found that reactions of small cyanide with hydrocarbon radicals result in the formation of either large cyanide radicals or ethyl and vinyl cyanide, both of which are very important prebiotic interstellar species. They subsequently react with the radicals CH2 and CH3 to yield n-PrCN and i-PrCN. The proposed reactions are efficient in the hot cores of SgrB2 (N) (where both n-PrCN and i-PrCN were detected) due to either being barrierless or due to the presence of a permeable entrance barrier. However, the formation of n-PrCN and i-PrCN from the ethyl and vinyl cyanide always has an entrance barrier impermeable in the dark cloud; therefore, our proposed pathways are inefficient in the deep regions of molecular clouds. It is also observed that ethyl and vinyl cyanide serve as direct precursors to n-PrCN and i-PrCN and their abundance in ISM is directly related to the abundance of both isomers of propyl cyanide in ISM. In all the cases, reactions in the ice have smaller barriers compared to their gas-phase counterparts.


2005 ◽  
Vol 11 (20) ◽  
pp. 5908-5916 ◽  
Author(s):  
Ferenc Pollreisz ◽  
Ágnes Gömöry ◽  
Gitta Schlosser ◽  
Károly Vékey ◽  
Iván Solt ◽  
...  

2019 ◽  
Vol 10 (2) ◽  
pp. 103-109
Author(s):  
O. V. Smirnova ◽  
◽  
A. G. Grebenyuk ◽  
V. V. Lobanov ◽  
◽  
...  

2014 ◽  
Vol 1046 ◽  
pp. 10-19 ◽  
Author(s):  
Chao Zhang ◽  
Yong-Hua Qi ◽  
Ping Qian ◽  
Ming-Jing Zhong ◽  
Liang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document