Performance Study on Indexing and Accessing of Small File in Hadoop Distributed File System

Author(s):  
Anisha P Rodrigues ◽  
Roshan Fernandes ◽  
P. Vijaya ◽  
Satish Chander

Hadoop Distributed File System (HDFS) is developed to efficiently store and handle the vast quantity of files in a distributed environment over a cluster of computers. Various commodity hardware forms the Hadoop cluster, which is inexpensive and easily available. The large number of small files stored in HDFS consumed more memory which lags the performance because small files consumed heavy load on NameNode. Thus, the efficiency of indexing and accessing the small files on HDFS is improved by several techniques, such as archive files, New Hadoop Archive (New HAR), CombineFileInputFormat (CFIF), and Sequence file generation. The archive file combines the small files into single blocks. The new HAR file combines the smaller files into a single large file. The CFIF module merges the multiple files into a single split using NameNode, and the sequence file combines all the small files into a single sequence. The indexing and accessing of a small file in HDFS are evaluated using performance metrics, such as processing time and memory usage. The experiment shows that the sequence file generation approach is efficient when compared to other approaches concerning file access time is 1.5[Formula: see text]s, memory usage is 20 KB in multi-node, and the processing time is 0.1[Formula: see text]s.

2010 ◽  
Vol 30 (8) ◽  
pp. 2060-2065 ◽  
Author(s):  
Ning CAO ◽  
Zhong-hai WU ◽  
Hong-zhi LIU ◽  
Qi-xun ZHANG

2020 ◽  
Vol 1444 ◽  
pp. 012012
Author(s):  
Meisuchi Naisuty ◽  
Achmad Nizar Hidayanto ◽  
Nabila Clydea Harahap ◽  
Ahmad Rosyiq ◽  
Agus Suhanto ◽  
...  

2016 ◽  
pp. 1220-1243
Author(s):  
Ilias K. Savvas ◽  
Georgia N. Sofianidou ◽  
M-Tahar Kechadi

Big data refers to data sets whose size is beyond the capabilities of most current hardware and software technologies. The Apache Hadoop software library is a framework for distributed processing of large data sets, while HDFS is a distributed file system that provides high-throughput access to data-driven applications, and MapReduce is software framework for distributed computing of large data sets. Huge collections of raw data require fast and accurate mining processes in order to extract useful knowledge. One of the most popular techniques of data mining is the K-means clustering algorithm. In this study, the authors develop a distributed version of the K-means algorithm using the MapReduce framework on the Hadoop Distributed File System. The theoretical and experimental results of the technique prove its efficiency; thus, HDFS and MapReduce can apply to big data with very promising results.


Sign in / Sign up

Export Citation Format

Share Document