scholarly journals Gram matrix associated to controlled frames

Author(s):  
E. Osgooei ◽  
A. Rahimi

Controlled frames have been recently introduced in Hilbert spaces to improve the numerical efficiency of interactive algorithms for inverting the frame operator. In this paper, unlike the cross-Gram matrix of two different sequences which is not always a diagnostic tool, we define the controlled-Gram matrix of a sequence as a practical implement to diagnose that a given sequence is a controlled Bessel, frame or Riesz basis. Also, we discuss the cases that the operator associated to controlled Gram matrix will be bounded, invertible, Hilbert–Schmidt or a trace-class operator. Similar to standard frames, we present an explicit structure for controlled Riesz bases and show that every [Formula: see text]-controlled Riesz basis [Formula: see text] is in the form [Formula: see text], where [Formula: see text] is a bijective operator on [Formula: see text]. Furthermore, we propose an equivalent accessible condition to the sequence [Formula: see text] being a [Formula: see text]-controlled Riesz basis.

Author(s):  
Dongwei Li ◽  
Jinsong Leng ◽  
Tingzhu Huang

In this paper, we give some new characterizations of g-frames, g-Bessel sequences and g-Riesz bases from their topological properties. By using the Gram matrix associated with the g-Bessel sequence, we present a sufficient and necessary condition under which the sequence is a g-Bessel sequence (or g-Riesz basis). Finally, we consider the excess of a g-frame and obtain some new results.


Positivity ◽  
2020 ◽  
Author(s):  
Minoo Khosheghbal-Ghorabayi ◽  
Ghorban-Ali Bagheri-Bardi

2008 ◽  
Vol 2008 ◽  
pp. 1-17
Author(s):  
Adrian P. C. Lim

This article aims to give a formula for differentiating, with respect to , an expression of the form , where and is a diffusion process starting from , taking values in a manifold, and the expectation is taken with respect to the law of this process. is a trace class operator defined by , where , are locally Lipschitz, positive matrices.


Author(s):  
AMIR KHOSRAVI ◽  
BEHROOZ KHOSRAVI

In this paper we introduce modular Riesz basis, modular g-Riesz basis in Hilbert C*-modules in a very natural way and we show that they share many properties with Riesz basis and g-Riesz basis in Hilbert spaces. We also found that by using the fact that every finitely or countably generated Hilbert C*-module over a unital C*-algebra has a standard Parseval frame, we characterize g-frames, modular Riesz bases and modular g-Riesz bases. Finally we obtain a perturbation result for modular g-Riesz bases.


1986 ◽  
Vol 34 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Fuad Kittaneh

We present some results concerning the trace of certain trace class commutators of operators acting on a separable, complex Hilbert space. It is shown, among other things, that if X is a Hilbert-Schmidt operator and A is an operator such that AX − XA is a trace class operator, then tr (AX − XA) = 0 provided one of the following conditions holds: (a) A is subnormal and A*A − AA* is a trace class operator, (b) A is a hyponormal contraction and 1 − AA* is a trace class operator, (c) A2 is normal and A*A − AA* is a trace class operator, (d) A2 and A3 are normal. It is also shown that if A is a self - adjoint operator, if f is a function that is analytic on some neighbourhood of the closed disc{z: |z| ≥ ||A||}, and if X is a compact operator such that f (A) X − Xf (A) is a trace class operator, then tr (f (A) X − Xf (A))=0.


1974 ◽  
Vol 6 (1) ◽  
pp. 47-50 ◽  
Author(s):  
J. A. Erdös

Sign in / Sign up

Export Citation Format

Share Document