HAMILTONIAN MODELS FOR QUANTUM MEMORY CHANNELS

2011 ◽  
Vol 09 (02) ◽  
pp. 625-635
Author(s):  
ANTONIO D'ARRIGO ◽  
GIULIANO BENENTI ◽  
GIUSEPPE FALCI

Quantum memory channels are attracting growing interest, motivated by both realistic possibilities of transferring information by means of quantum hardware and inadequacies of the memoryless approximation. In fact, subsequent uses of the same quantum transmission resource can be significantly correlated. In this paper we review two Hamiltonian models describing memory effects in a purely dephasing spin-boson channel and in a channel with damping visualized by a micromaser system, respectively. In both cases, we show that the quantum information transmission rates are higher than in the memoryless limit.

2021 ◽  
Vol 11 (4) ◽  
pp. 1405
Author(s):  
Nan Zhao ◽  
Tingting Wu ◽  
Yan Yu ◽  
Changxing Pei

As research on quantum computers and quantum information transmission deepens, the multi-particle and multi-mode quantum information transmission has been attracting increasing attention. For scenarios where multi-parties transmit sequentially increasing qubits, we put forward a novel (N + 1)-party cyclic remote state preparation (RSP) protocol among an arbitrary number of players and a controller. Specifically, we employ a four-party scheme in the case of a cyclic asymmetric remote state preparation scheme and demonstrate the feasibility of the scheme on the IBM Quantum Experience platform. Furthermore, we present a general quantum channel expression under different circulation directions based on the n-party. In addition, considering the impact of the actual environment in the scheme, we discuss the feasibility of the scheme affected by different noises.


Author(s):  
Aditya N. Sharma ◽  
Martin Ritter ◽  
Robinjeet Singh ◽  
Elizabeth A. Goldschmidt ◽  
Alan L. Migdall

2010 ◽  
Vol 08 (01n02) ◽  
pp. 181-218 ◽  
Author(s):  
MARCIN ZWIERZ ◽  
PIETER KOK

Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes — stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium — an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single stepQ-qubit GHZ states with success probability psuccess ~ ηQ/2, where η is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer.


2012 ◽  
Vol 12 (2) ◽  
pp. 899-906 ◽  
Author(s):  
Lei Wang ◽  
Jie-Hui Huang ◽  
Jonathan P. Dowling ◽  
Shi-Yao Zhu

2015 ◽  
Vol 24 (5) ◽  
pp. 050308 ◽  
Author(s):  
Li-Hui Shi ◽  
Xu-Tao Yu ◽  
Xiao-Fei Cai ◽  
Yan-Xiao Gong ◽  
Zai-Chen Zhang

Sign in / Sign up

Export Citation Format

Share Document