ROBUST MESSAGE AUTHENTICATION OVER A COLLECTIVE-NOISE CHANNEL

2012 ◽  
Vol 10 (06) ◽  
pp. 1250064 ◽  
Author(s):  
XIAO-QIU CAI ◽  
QING-QING LIU

We give two robust message authentication schemes over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a collective-noise channel. We also analyze the security and show that it is not possible to forge valid message authentication codes for an adversary even if he/she has unlimited computational resources in the two schemes.

Cryptography ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 31
Author(s):  
Georgios M. Nikolopoulos ◽  
Marc Fischlin

In conventional cryptography, information-theoretically secure message authentication can be achieved by means of universal hash functions, and requires that the two legitimate users share a random secret key, which is at least twice as long as the tag. We address the question of whether quantum resources can offer any advantage over classical unconditionally secure message authentication codes. It is shown that a broad class of symmetric prepare-and-measure quantum message-authentication schemes cannot do better than their classical counterparts.


Author(s):  
Kannan Balasubramanian

Cryptographic Hash Functions are used to achieve a number of Security goals like Message Authentication, Message Integrity, and are also used to implement Digital Signatures (Non-repudiation), and Entity Authentication. This chapter discusses the construction of hash functions and the various attacks on the Hash functions. The Message Authentication Codes are similar to the Hash functions except that they require a key for producing the message digest or hash. Authenticated Encryption is a scheme that combines hashing and Encryption. The Various types of hash functions like one-way hash function, Collision Resistant hash function and Universal hash functions are also discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document