ULTRA-WIDEBAND MULTI-BAND OFDM SYSTEMS: TIMING SYNCHRONIZATION AND FREQUENCY OFFSET ESTIMATION

2007 ◽  
Vol 04 (03) ◽  
pp. 243-264
Author(s):  
CHIN WEE YAK ◽  
ZHONGDING LEI
Information ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 313 ◽  
Author(s):  
Liu Jun ◽  
Luo Zhongqiang ◽  
Xiong Xingzhong

An important function of next-generation (5G) and beyond mobile communication systems is aim to provide thousand-fold capacity growth and to support high-speed data transmission up to several megabits per second. However, the research community and industries have to face a dilemma of power consumption and hardware design to satisfy the increasing communication requirements. For the purpose of improving the system cost, power consumption, and implementation complexity, a novel scheme of symbol timing and frequency offset estimation with low-resolution analog-to-digital converters (ADCs) based on an orthogonal frequency division multiplexing ultra-wideband (OFDM-UWB) system is proposed in this paper. In our work, we first verified the principle that the autocorrelation of the pseudo-noise (PN) sequences was not affected by low-resolution quantization. With the help of this property, the timing synchronization could be strongly implemented against the influence of low-resolution quantization. Then, the transmitted signal structure and low-resolution quantization scheme under the synchronization scheme were designed. Finally, a frequency offset estimation model with one-bit timing synchronization was established. Theoretical analysis and simulation results corroborate that the performance of the proposed scheme not only approximates to that of the full-resolution synchronization scheme, but also has lower power consumption and computational complexity.


Sign in / Sign up

Export Citation Format

Share Document