orthogonal frequency division multiplexing
Recently Published Documents


TOTAL DOCUMENTS

2044
(FIVE YEARS 673)

H-INDEX

34
(FIVE YEARS 7)

Author(s):  
Yazan Alkhlefat ◽  
Sevia Mahdaliza Idrus Sutan Nameh ◽  
Farabi M. Iqbal

Current and future wireless communication systems are designed to achieve the user’s demands such as high data rate and high speed with low latency and simultaneously to save bandwidth and spectrum. In 5G and 6G networks, a high speed of transmitting and switching is required for internet of things (IoT) applications with higher capacity. To achieve these requirements a semiconductor optical amplifier (SOA) is considered as a wavelength converter to transmit a signal with an orthogonal frequency division multiplexing with subcarrier power modulation (OFDM-SPM). It exploits the subcarrier’s power in conventional OFDM block in order to send additional bits beside the normally transmitted bits. In this paper, we optimized the SOA’s parameters to have efficient wavelength conversion process. These parameters are included the injection current (IC) of SOA, power of pump and probe signals. A 7 Gbps OFDM-SPM signal with a millimeter waves (MMW) carrier of 80 GHz is considered for signal switching. The simulation results investigated and analyzed the performance of the designed system in terms of error vector magnitude (EVM), bit error rate (BER) and optical signal-to-noise ratio (OSNR). The optimum value of IC is 0.6 A while probe power is 9.45 and 8.9 dBm for pump power. The simulation is executed by virtual photonic integrated (VPI) software.


2022 ◽  
Vol 15 (3) ◽  
pp. 1-25
Author(s):  
Stefan Brennsteiner ◽  
Tughrul Arslan ◽  
John Thompson ◽  
Andrew McCormick

Machine learning in the physical layer of communication systems holds the potential to improve performance and simplify design methodology. Many algorithms have been proposed; however, the model complexity is often unfeasible for real-time deployment. The real-time processing capability of these systems has not been proven yet. In this work, we propose a novel, less complex, fully connected neural network to perform channel estimation and signal detection in an orthogonal frequency division multiplexing system. The memory requirement, which is often the bottleneck for fully connected neural networks, is reduced by ≈ 27 times by applying known compression techniques in a three-step training process. Extensive experiments were performed for pruning and quantizing the weights of the neural network detector. Additionally, Huffman encoding was used on the weights to further reduce memory requirements. Based on this approach, we propose the first field-programmable gate array based, real-time capable neural network accelerator, specifically designed to accelerate the orthogonal frequency division multiplexing detector workload. The accelerator is synthesized for a Xilinx RFSoC field-programmable gate array, uses small-batch processing to increase throughput, efficiently supports branching neural networks, and implements superscalar Huffman decoders.


Author(s):  
Sarmad K. Ibrahim ◽  
Saif A. Abdulhussien

<span>The downlink multi-user precoding of the multiple-input multiple-output (MIMO) method includes optimal channel state information at the base station and a variety of linear precoding (LP) schemes. Maximum ratio transmission (MRT) is among the common precoding schemes but does not provide good performance with massive MIMO, such as high bit error rate (BER) and low throughput. The orthogonal frequency division multiplexing (OFDM) and precoding schemes used in 5G have a flaw in high-speed environments. Given that the Doppler effect induces frequency changes, orthogonality between OFDM subcarriers is disrupted and their throughput output is decreased and BER is decreased. This study focuses on solving this problem by improving the performance of a 5G system with MRT, specifically by using a new design that includes weighted overlap and add (WOLA) with MRT. The current research also compares the standard system MRT with OFDM with the proposed design (WOLA-MRT) to find the best performance on throughput and BER. Improved system results show outstanding performance enhancement over a standard system, and numerous improvements with massive MIMO, such as best BER and throughput. Its approximately 60% more throughput than the traditional systems. Lastly, the proposed system improves BER by approximately 2% compared with the traditional system.</span>


Author(s):  
Vo Trung Dung Huynh ◽  
Linh Mai ◽  
Hung Ngoc Do ◽  
Minh Ngoc Truong Nguyen ◽  
Trung Kien Pham

<span>High-speed Terahertz communication systems has recently employed orthogonal frequency division multiplexing approach as it provides high spectral efficiency and avoids inter-symbol interference caused by dispersive channels. Such high-speed systems require extremely high-sampling <br /> time-interleaved analog-to-digital converters at the receiver. However, timing mismatch of time-interleaved analog-to-digital converters significantly causes system performance degradation. In this paper, to avoid such performance degradation induced by timing mismatch, we theoretically determine maximum tolerable mismatch levels for orthogonal frequency division multiplexing communication systems. To obtain these levels, we first propose an analytical method to derive the bit error rate formula for quadrature and pulse amplitude modulations in Rayleigh fading channels, assuming binary reflected gray code (BRGC) mapping. Further, from the derived bit error rate (BER) expressions, we reveal a threshold of timing mismatch level for which error floors produced by the mismatch will be smaller than a given BER. Simulation results demonstrate that if we preserve mismatch level smaller than 25% of this obtained threshold, the BER performance degradation is smaller than 0.5 dB as compared to the case without timing mismatch.</span>


Author(s):  
Sonti Swapna

Abstract: A combination of multiple-input multiple-output (MIMO) systems and orthogonal frequency division multiplexing (OFDM) technologies can be employed in modern wireless communication systems to achieve high data rates and improved spectrum efficiency. For multiple input multiple output (MIMO) systems, this paper provides a Rayleigh fading channel estimation technique based on pilot carriers. The channel is estimated using traditional Least Square (LS) and Minimum Mean Square (MMSE) estimation techniques. The MIMO-OFDM system's performance is measured using the Bit Error Rate (BER) and Mean Square Error (MSE) levels. Keywords: MIMO, MMSE, Channel estimation, BER, OFDM


Author(s):  
Ms. Swarnita Gorakshnath Kale ◽  
Prof. Kale G. B.

Orthogonal frequency division multiplexing (OFDM) is characterized by spectral efficiency. It enables flexible and agile spectrum allocation. But still it lags as it suffers from spectral leakage in the form of large side lobes. It leads to inter-channel interference if not handled carefully.in proposed system spectral emission mask system is implemented to combat spectral leakage and ultimately avoiding adjacent channel interference. A spectral mask, also known as a channel mask or transmission mask is a mathematically-defined set of lines applied to the levels of radio (or optical) transmissions. The spectral mask is generally intended to reduce adjacent-channel interference by limiting excessive radiation at frequencies beyond the necessary bandwidth. The proposed system is implemented over MATLAB platform using script language.


2022 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Mohsin Murad ◽  
Imran A. Tasadduq ◽  
Pablo Otero

We propose an effective, low complexity and multifaceted scheme for peak-to-average power ratio (PAPR) reduction in the orthogonal frequency division multiplexing (OFDM) system for underwater acoustic (UWA) channels. In UWA OFDM systems, PAPR reduction is a challenging task due to low bandwidth availability along with computational and power limitations. The proposed scheme takes advantage of XOR ciphering and generates ciphered Bose–Chaudhuri–Hocquenghem (BCH) codes that have low PAPR. This scheme is based upon an algorithm that computes several keys offline, such that when the BCH codes are XOR-ciphered with these keys, it lowers the PAPR of BCH-encoded signals. The subsequent low PAPR modified BCH codes produced using the chosen keys are used in transmission. This technique is ideal for UWA systems as it does not require additional computational power at the transceiver during live transmission. The advantage of the proposed scheme is threefold. First, it reduces the PAPR; second, since it uses BCH codes, the bit error rate (BER) of the system improves; and third, a level of encryption is introduced via XOR ciphering, enabling secure communication. Simulations were performed in a realistic UWA channel, and the results demonstrated that the proposed scheme could indeed achieve all three objectives with minimum computational power.


Author(s):  
K. Seshadri Sastry ◽  
K. Baburao ◽  
A.V. Prabu ◽  
G.Naveen Kumar

In orthogonal frequency-division multiplexing (OFDM) systems, synchronization issues are of great importance since synchronization errors might destroy the orthogonality among all subcarriers and, therefore, introduce intercarrier interference (ICI) and intersymbol interference (ISI). Several schemes of frequency offset estimation in OFDM systems have been investigated. This paper compares performance and computational complexity of Smoothing Power Spectrum (SPS) and Frequency Analysis (FA) methods for blind carrier frequency offset (CFO) estimation in OFDM systems.


2022 ◽  
Vol 14 (2) ◽  
pp. 278
Author(s):  
Zhixing Liu ◽  
Yinghui Quan ◽  
Yaojun Wu ◽  
Mengdao Xing

Sparse frequency agile orthogonal frequency division multiplexing (SFA-OFDM) signal brings excellent performance to electronic counter-countermeasures (ECCM) and reduces the complexity of the radar system. However, frequency agility makes coherent processing a much more challenging task for the radar, which leads to the discontinuity of the echo phase in a coherent processing interval (CPI), so the fast Fourier transform (FFT)-based method is no longer a valid way to complete the coherent integration. To overcome this problem, we proposed a novel scheme to estimate both super-resolution range and velocity. The subcarriers of each pulse are firstly synthesized in time domain. Then, the range and velocity estimations for the SFA-OFDM radar are regarded as the parameter estimations of a linear array. Finally, both the super-resolution range and velocity are obtained by exploiting the multiple signal classification (MUSIC) algorithm. Simulation results are provided to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document