scholarly journals THE UPPER BOUND PROPERTY FOR SOLID MECHANICS OF THE LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD (LC-RPIM)

2007 ◽  
Vol 04 (03) ◽  
pp. 521-541 ◽  
Author(s):  
G. Y. ZHANG ◽  
G. R. LIU ◽  
T. T. NGUYEN ◽  
C. X. SONG ◽  
X. HAN ◽  
...  

It has been proven by the authors that both the upper and lower bounds in energy norm of the exact solution to elasticity problems can now be obtained by using the fully compatible finite element method (FEM) and linearly conforming point interpolation method (LC-PIM). This paper examines the upper bound property of the linearly conforming radial point interpolation method (LC-RPIM), where the Radial Basis Functions (RBFs) are used to construct shape functions and node-based smoothed strains are used to formulate the discrete system equations. It is found that the LC-RPIM also provides the upper bound of the exact solution in energy norm to elasticity problems, and it is much sharper than that of LC-PIM due to the decrease of stiffening effect. An effective procedure is also proposed to determine both upper and lower bounds for the exact solution without knowing it in advance: using the LC-RPIM to compute the upper bound, using the standard fully compatible FEM to compute the lower bound based on the same mesh for the problem domain. Numerical examples of 1D, 2D and 3D problems are presented to demonstrate these important properties of LC-RPIM.

Author(s):  
ROSS Costa ◽  
J Belinha ◽  
RM Natal Jorge ◽  
DES Rodrigues

Additive manufacturing is an emergent technology, which witnessed a large growth demanded by the consumer market. Despite this growth, the technology needs scientific regulation and guidelines to be reliable and consistent to the point that is feasible to be used as a source of manufactured end-products. One of the processes that has seen the most significant development is the fused deposition modeling, more commonly known as 3D printing. The motivation to better understand this process makes the study of extrusion of materials important. In this work, the radial point interpolation method, a meshless method, is applied to the study of extrusion of viscoplastic materials, using the formulation originally intended for the finite element method, the flow formulation. This formulation is based on the reasoning that solid materials under those conditions behave like non-Newtonian fluids. The time stepped analysis follows the Lagrangian approach taking advantage of the easy remeshing inherent to meshless methods. To validate the newly developed numerical tool, tests are conducted with numerical examples obtained from the literature for the extrusion of aluminum, which is a more common problem. Thus, after the performed validation, the algorithm can easily be adapted to simulate the extrusion of polymers in fused deposition modeling processes.


Sign in / Sign up

Export Citation Format

Share Document