SMOOTHED FINITE ELEMENTS LARGE DEFORMATION ANALYSIS

2010 ◽  
Vol 07 (03) ◽  
pp. 513-524 ◽  
Author(s):  
S. J. LIU ◽  
H. WANG ◽  
H. ZHANG

The smoothed finite element method (SFEM) was developed in order to eliminate certain shortcomings of the finite element method (FEM). SFEM enjoys some of the flexibilities of meshfree methods. One advantage of SFEM is its applicability to modeling large deformations. Due to the absence of volume integration and parametric mapping, issues such as negative volumes and singular Jacobi matrix do not occur. However, despite these advantages, SFEM has never been applied to problems with extreme large deformation. For the first time, we apply SFEM to extreme large deformations. For two numerical problems, we demonstrate the advantages of SFEM over FEM. We also show that SFEM can compete with the flexibility of meshfree methods.

2019 ◽  
Vol 17 (02) ◽  
pp. 1845003 ◽  
Author(s):  
Yuki Onishi ◽  
Ryoya Iida ◽  
Kenji Amaya

A state-of-the-art tetrahedral smoothed finite element method, F-barES-FEM-T4, is demonstrated on viscoelastic large deformation problems. The stress relaxation of viscoelastic materials brings near incompressibility when the long-term Poisson’s ratio is close to 0.5. The conventional hybrid 4-node tetrahedral (T4) elements cannot avoid the shear locking and pressure checkerboarding issues, meanwhile F-barES-FEM-T4 can suppress these issues successfully by adopting the edge-based smoothed finite element method (ES-FEM) with the aid of the F-bar method and the cyclic smoothing procedure. A few examples of analyses verify that F-barES-FEM-T4 is locking-free and pressure oscillation-free in viscoelastic analyses as well as in nearly incompressible hyperelastic or elastoplastic analyses.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The concept of the finite-element procedure may be dated back to 1943 when Courant approximated the warping function linearly in each of an assemblage of triangular elements to the St. Venant torsion problem and proceeded to formulate the problem using the principle of minimum potential energy. Similar ideas were used later by several investigators to obtain the approximate solutions to certain boundary-value problems. It was Clough who first introduced the term “finite elements” in the study of plane elasticity problems. The equivalence of this method with the well-known Ritz method was established at a later date, which made it possible to extend the applications to a broad spectrum of problems for which a variational formulation is possible. Since then numerous studies have been reported on the theory and applications of the finite-element method. In this and next chapters the finite-element formulations necessary for the deformation analysis of metal-forming processes are presented. For hot forming processes, heat transfer analysis should also be carried out as well as deformation analysis. Discretization for temperature calculations and coupling of heat transfer and deformation are discussed in Chap. 12. More detailed descriptions of the method in general and the solution techniques can be found in References [3-5], in addition to the books on the finite-element method listed in Chap. 1. The path to the solution of a problem formulated in finite-element form is described in Chap. 1 (Section 1.2). Discretization of a problem consists of the following steps: (1) describing the element, (2) setting up the element equation, and (3) assembling the element equations. Numerical analysis techniques are then applied for obtaining the solution of the global equations. The basis of the element equations and the assembling into global equations is derived in Chap. 5. The solution satisfying eq. (5.20) is obtained from the admissible velocity fields that are constructed by introducing the shape function in such a way that a continuous velocity field over each element can be denned uniquely in terms of velocities of associated nodal points.


2019 ◽  
Vol 17 (02) ◽  
pp. 1845002 ◽  
Author(s):  
J. F. Zhang ◽  
R. P. Niu ◽  
Y. F. Zhang ◽  
C. Q. Wang ◽  
M. Li ◽  
...  

Smoothed finite element method (S-FEM) is a new general numerical method which has been applied to solve various practical engineering problems. It combines standard finite element method (FEM) and meshfree techniques based on the weaken-weak (W2) formulation. This project, for the first time, develops a preprocessor software package SFEM-Pre for creating types of two-dimensional (2D) and three-dimensional (3D) S-FEM models following strictly the S-FEM theory. Because the software architecture of our 3D processor is the same as our 2D preprocessor, we will mainly introduce the 2D preprocessor in terms of software design for easier description, but the examples will include both 2D and 3D cases to fully demonstrate and validate the whole preprocessor of S-FEM. Our 2D preprocessor package is equipped with a graphical user interface (GUI) for easy use, and with a connectivity database for efficient computation. Schemes are developed for not only automatically meshes the problem domains using our GUI, but also accepts various geometry files made available from some existing commercial software packages, such as ABAQUS®and HyperMesh®. In order to improve the efficiency of our preprocessor, a parallel triangulation mesh generator has also been developed based on the advancing front technique (AFT) to create triangular meshes for complex geometry, and at the same time to create six types of connectivity needed for various S-FEM models. In addition, a database is implemented in our code to record all these connectivity to avoid duplicated calculation. Finally, intensive numerical experiments are conducted to validate the efficiency, accuracy and stability of our preprocessor codes. It is shown that with our preprocessor, an S-FEM can be created automatically without much human intervention for geometry of arbitrary complexity.


1982 ◽  
Vol 11 (4) ◽  
pp. 310-327
Author(s):  
H. Irokazu ◽  
M. Inami ◽  
Yoshio Nakahara

Methods for analysing coated plain-weave fabric which has properties of nonlinear elasticity have not yet been satisfactorily developed. In this paper, a method which is promis ing for use in engineering applications like the strength analysis of membrane structures is presented. The finite element method using a rectangular element consisting of plain-weave fabric and coating material which is assumed to be an isotropic elastic plate of plane stress is applied to the method. Verification of the me thod is made by using uniaxial stress-strain responses. A square piece of coated plain-weave fabric with a square hole in it is analyzed as an example of application of the present method. Key Words: coated plain-weave fabrics; finite element method; nonlinearly elastic biaxial response; geometrically nonlinear prob lem ; incremental approach.


Sign in / Sign up

Export Citation Format

Share Document