ROBUST MOBILE ROBOT VELOCITY ESTIMATION USING A POLYGONAL ARRAY OF OPTICAL MICE

2008 ◽  
Vol 05 (04) ◽  
pp. 321-330 ◽  
Author(s):  
SUNGBOK KIM ◽  
SANGHYUP LEE

This paper presents the robust velocity estimation of a mobile robot using a polygonal array of optical mice that are installed at the bottom of the mobile robot. First, the velocity kinematics from a mobile robot to an array of optical mice is derived, from which the least squares estimation of a mobile robot velocity is obtained. Second, the least squares mobile robot velocity estimation is shown to be robust against measurement noises and partial malfunctions of optical mice. Third, in the presence of installation error, a practical method for optical mouse position calibration is devised. Finally, some experimental results are given to demonstrate the validity and performance of the proposed mobile robot velocity estimation.

2013 ◽  
Vol 347-350 ◽  
pp. 808-811
Author(s):  
Jia Lu Li ◽  
Lin Bing Long ◽  
Bao Feng Zhang

Localization is the basis for navigation of mobile robots. This paper focuses on key techniques of localization for mobile robots based on vision. Firstly, the specific measures and steps of the algorithm are analyzed and researched in depth. In the study, SIFT algorithm combined with epipolar geometry constraint is used on the environment feature point detection, matching and tracking. And the method of RANSAC combined with the least squares is used to obtain accurate results of the motion estimation. Then the necessary experiments are carried out to verify the correctness and effectiveness of algorithms. The experimental results verified the accuracy of the improved algorithm.


Sign in / Sign up

Export Citation Format

Share Document