measurement noises
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 74)

H-INDEX

21
(FIVE YEARS 5)

Author(s):  
Marko Mihalec ◽  
Mitja Trkov ◽  
Jingang Yi

Abstract Low-friction foot/ground contacts present a particular challenge for stable bipedal walkers. The slippage of the stance foot introduces complexity in robot dynamics and the general locomotion stability results cannot be applied directly. We relax the commonly used assumption of non-slip contact between the walker foot and the ground and examine bipedal dynamics under foot slip. Using a two-mass linear inverted pendulum model, we introduce the concept of balance recoverability and use it to quantify the balanced or fall-prone walking gaits. Balance recoverability also serves as the basis for the design of the balance recovery controller. We design the within- or multi-step recovery controller to assist the walker to avoid fall. The controller performance is validated through simulation results and robustness is demonstrated in the presence of measurement noises as well as variations of foot/ground friction conditions. In addition, the proposed methods and models are used to analyze the data from human walking experiments. The multiple subject experiments validate and illustrate the balance recoverability concept and analyses.


Author(s):  
Luyao Zhang ◽  
Shengquan Li ◽  
Chaowei Zhu ◽  
Juan Li

This paper proposes a disturbance rejection method with extended state observer (ESO) and a tracking differentiator (TD) to realize vibration suppression of all-clamped plate structure in the presence of lumped disturbance, i.e. internal dynamic uncertainties, unknown external forces and accelerometer measurement noises. First, the structure is modeled as two degrees of freedom system based on vibration characteristics. Second, an ESO is employed to ensure the vibration suppression performance by estimating the lumped disturbances and compensating these disturbances via real-time feedforward mechanism. Meanwhile, a TD is introduced to eliminate the influence of the measurement noises. Moreover, the stability of the closed-loop system is discussed in detail. Finally, the proposed controller is verified on the hardware-in-loop plat-form based on NI PCIe-6343 data acquisition card. Theoretical analysis and experimental results show that the proposed method possesses good vibration suppression performance.


Sign in / Sign up

Export Citation Format

Share Document