CANONICAL CONNECTIONS IN GAUGE-NATURAL FIELD THEORIES

2008 ◽  
Vol 05 (06) ◽  
pp. 973-988 ◽  
Author(s):  
MARCO FERRARIS ◽  
MAURO FRANCAVIGLIA ◽  
MARCELLA PALESE ◽  
EKKEHART WINTERROTH

We investigate canonical aspects concerning the relation between symmetries and conservation laws in gauge-natural field theories. In particular, we find that a canonical spinor connection can be selected by the simple requirement of the global existence of canonical superpotentials for the Lagrangian describing the coupling of gravitational and Fermionic fields. In fact, the naturality of a suitably defined variational Lagragian implies the existence of an associated energy-momentum conserved current. Such a current defines a Hamiltonian form in the corresponding phase space; we show that an associated Hamiltonian connection is canonically defined along the kernel of the generalized gauge-natural Jacobi morphism and uniquely characterizes the canonical spinor connection.

1986 ◽  
Vol 167 (2) ◽  
pp. 354-389 ◽  
Author(s):  
Judith M Arms ◽  
Ian M Anderson

2020 ◽  
pp. 443-475
Author(s):  
Giuseppe Mussardo

Free theories are usually regarded as trivial examples of quantum systems. This chapter proves that this is not the case of the conformal field theories associated to the free bosonic and fermionic fields. The subject is not only full of beautiful mathematical identities but is also the source of deep physical concepts with far reaching applications. Chapter 12 also covers quantization of the bosonic field, vertex operators, the free bosonic field on a torus, modular transformations, the quantization of the free Majorana fermion, the Neveu–Schwarz and Ramond sectors, fermions on a torus, calculus for anti-commuting quantities and partition functions.


1980 ◽  
Vol 58 (4) ◽  
pp. 463-471
Author(s):  
Meiun Shintani

Considering the commutators between a scalar field and a conserved current, we shall clarify the connection between the mass spectrum for a scalar field and the structures of a current. For a special form of currents involving c-number functions, non-invariance of the vacuum under the corresponding transformation entails the existence of a massive mode. It is shown that once a type of currents is specified, the pole structures for [Formula: see text] depend only on c-number parts of Jμ(x). We shall show that the non-vanishing Goldstone commutator does not automatically imply the degeneracy of the vacuum state, and discuss the applicability of the Goldstone theorem.


The field theories of the electron and positron and also of the meson are developed by means of a close analogy with the photon. The analogy consists in the representation of the tracks of these particles by means of null-geodesics. The choice of notation is guided by the attempt to arrive at a theory in which the lengths (h/m 0 c) and (e 2 /m 0 c 2 ) occur naturally without reference to the structure of the particles, and in which the concept of quantization of electric charge is included. It is found that these objects can be attained by assuming that an additional degree of freedom is necessary for the description of the particles. If this is regarded as an additional dimension, it is found that an exact analogy can be made with the field theories familiar in the theory of relativity. An important feature is the union, in a single tensor, of energy, momentum and current density. A certain arbitrariness, not unlike that associated with the Poynting vector, is revealed, and it is shown that if this is removed by making a definite choice of the magnitude of the magnetic moment of the electron and positron, the spin angular momefttum is ^hereby fixed at the value 1/2h. In the development of the meson field the analogy shows* that the nuclear sources of the field act as if contributing a current density analogous to a magnetic current density in the electromagnetic case. The use of the additional degreb of freedom in the sinusoidal form indicates that the ratio of the constants g 1 and g 2 introduced into field theories as measures of the strengths of the sources is determined by the mass of the particle emitted in the neutron-proton transition.


Sign in / Sign up

Export Citation Format

Share Document