majorana fermion
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 38)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Kyusung Hwang ◽  
Ara Go ◽  
Ji Heon Seong ◽  
Takasada Shibauchi ◽  
Eun-Gook Moon

AbstractQuantum spin liquids realize massive entanglement and fractional quasiparticles from localized spins, proposed as an avenue for quantum science and technology. In particular, topological quantum computations are suggested in the non-abelian phase of Kitaev quantum spin liquid with Majorana fermions, and detection of Majorana fermions is one of the most outstanding problems in modern condensed matter physics. Here, we propose a concrete way to identify the non-abelian Kitaev quantum spin liquid by magnetic field angle dependence. Topologically protected critical lines exist on a plane of magnetic field angles, and their shapes are determined by microscopic spin interactions. A chirality operator plays a key role in demonstrating microscopic dependences of the critical lines. We also show that the chirality operator can be used to evaluate topological properties of the non-abelian Kitaev quantum spin liquid without relying on Majorana fermion descriptions. Experimental criteria for the non-abelian spin liquid state are provided for future experiments.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Sanjay Bloor ◽  
Tomás E. Gonzalo ◽  
Pat Scott ◽  
Christopher Chang ◽  
Are Raklev ◽  
...  

AbstractWe introduce the Universal Model Machine (), a tool for automatically generating code for the global fitting software framework , based on Lagrangian-level inputs. accepts models written symbolically in and formats, and can use either tool along with and to generate model, collider, dark matter, decay and spectrum code, as well as interfaces to corresponding versions of , , and (C "Image missing"). In this paper we describe the features, methods, usage, pathways, assumptions and current limitations of . We also give a fully worked example, consisting of the addition of a Majorana fermion simplified dark matter model with a scalar mediator to via , and carry out a corresponding fit.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1435
Author(s):  
Huajun Chen

We theoretically investigate Fano resonance in the absorption spectrum of a quantum dot (QD) based on a hybrid QD-nanomechanical resonator (QD–NR) system mediated by Majorana fermions (MFs) in superconducting iron (Fe) chains. The absorption spectra exhibit a series of asymmetric Fano line shapes, which are accompanied by the rapid normal phase dispersion and induce the optical propagation properties such as the slow light effect under suitable parametric regimes. The results indicated that the slow light induced by MFs can be obtained under different coupling regimes and different detuning regimes. Moreover, we also investigated the role of the NR, and the NR behaving as a phonon cavity enhances the slow light effect.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ross Dempsey ◽  
Igor R. Klebanov ◽  
Silviu S. Pufu

Abstract Two-dimensional SU(N) gauge theory coupled to a Majorana fermion in the adjoint representation is a nice toy model for higher-dimensional gauge dynamics. It possesses a multitude of “gluinoball” bound states whose spectrum has been studied using numerical diagonalizations of the light-cone Hamiltonian. We extend this model by coupling it to Nf flavors of fundamental Dirac fermions (quarks). The extended model also contains meson-like bound states, both bosonic and fermionic, which in the large-N limit decouple from the gluinoballs. We study the large-N meson spectrum using the Discretized Light-Cone Quantization (DLCQ). When all the fermions are massless, we exhibit an exact $$ \mathfrak{osp} $$ osp (1|4) symmetry algebra that leads to an infinite number of degeneracies in the DLCQ approach. More generally, we show that many single-trace states in the theory are threshold bound states that are degenerate with multi-trace states. These exact degeneracies can be explained using the Kac-Moody algebra of the SU(N) current. We also present strong numerical evidence that additional threshold states appear in the continuum limit. Finally, we make the quarks massive while keeping the adjoint fermion massless. In this case too, we observe some exact degeneracies that show that the spectrum of mesons becomes continuous above a certain threshold. This demonstrates quantitatively that the fundamental string tension vanishes in the massless adjoint QCD2 without explicit four-fermion operators.


2021 ◽  
Vol 64 (10) ◽  
Author(s):  
Ji-Bang Fu ◽  
Bin Li ◽  
Xin-Fang Zhang ◽  
Guang-Zheng Yu ◽  
Guang-Yao Huang ◽  
...  

AbstractAs the condensed matter analog of Majorana fermion, the Majorana zero-mode is well known as a building block of fault-tolerant topological quantum computing. This review focuses on the recent progress of Majorana experiments, especially experiments about semiconductor-superconductor hybrid devices. We first sketch Majorana zero-mode formation from a bottom-up view, which is more suitable for beginners and experimentalists. Then, we survey the status of zero-energy state signatures reported recently, from zero-energy conductance peaks, the oscillations, the quantization, and the interactions with extra degrees of freedom. We also give prospects of future experiments for advancing one-dimensional semiconductor nanowire-superconductor hybrid materials and devices.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
M. J. Neves ◽  
Nobuchika Okada ◽  
Satomi Okada

Abstract We present a minimal extension of the left-right symmetric model based on the gauge group SU(3)c× SU(2)L× SU(2)R× U(1)B−L× U(1)X, in which a vector-like fermion pair (ζL and ζR) charged under the U(1)B−L× U(1)X symmetry is introduced. Associated with the symmetry breaking of the gauge group SU(2)R× U(1)B−L× U(1)X down to the Standard Model (SM) hypercharge U(1)Y, Majorana masses for ζL,R are generated and the lightest mass eigenstate plays a role of the dark matter (DM) in our universe by its communication with the SM particles through a new neutral gauge boson “X”. We consider various phenomenological constraints of this DM scenario, such as the observed DM relic density, the LHC Run-2 constraints from the search for a narrow resonance, and the perturbativity of the gauge couplings below the Planck scale. Combining all constraints, we identify the allowed parameter region which turns out to be very narrow. A significant portion of the currently allowed parameter region will be tested by the High-Luminosity LHC experiments.


2021 ◽  
Author(s):  
Lu Yang ◽  
Jia-Xing Zhang ◽  
Shuang Liang ◽  
Wei Chen ◽  
Qiang-Hua Wang

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Jinmian Li ◽  
Junle Pei ◽  
Cong Zhang

Abstract This work studies the self-interacting dark matter (SIDM) scenario in the general NMSSM and beyond, where the dark matter is a Majorana fermion and the force mediator is a scalar boson. An improved analytical expression for the dark matter (DM) self-interacting cross section which takes into account the Born level effects is proposed. Due to the large couplings and light mediator in SIDM scenario, the DM/mediator will go through multiple branchings if they are produced with high energy. Based on the Monte Carlo simulation of the showers in the DM sector, we obtain the multiplicities and the spectra of the DM/mediator from the Higgsino production and decay at the LHC for our benchmark points.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haoxiang Li ◽  
T. T. Zhang ◽  
A. Said ◽  
G. Fabbris ◽  
D. G. Mazzone ◽  
...  

AbstractThe Kitaev quantum spin liquid epitomizes an entangled topological state, for which two flavors of fractionalized low-energy excitations are predicted: the itinerant Majorana fermion and the Z2 gauge flux. It was proposed recently that fingerprints of fractional excitations are encoded in the phonon spectra of Kitaev quantum spin liquids through a novel fractional-excitation-phonon coupling. Here, we detect anomalous phonon effects in α-RuCl3 using inelastic X-ray scattering with meV resolution. At high temperature, we discover interlaced optical phonons intercepting a transverse acoustic phonon between 3 and 7 meV. Upon decreasing temperature, the optical phonons display a large intensity enhancement near the Kitaev energy, JK~8 meV, that coincides with a giant acoustic phonon softening near the Z2 gauge flux energy scale. These phonon anomalies signify the coupling of phonon and Kitaev magnetic excitations in α-RuCl3 and demonstrates a proof-of-principle method to detect anomalous excitations in topological quantum materials.


Sign in / Sign up

Export Citation Format

Share Document