A REDUCED STABILITY CONDITION FOR NONLINEAR RELAXATION TO CONSERVATION LAWS

2004 ◽  
Vol 01 (01) ◽  
pp. 149-170 ◽  
Author(s):  
FRANÇOIS BOUCHUT

We consider multidimensional hyperbolic systems of conservation laws with relaxation, together with their associated limit systems. A strong stability condition for such asymptotics has been introduced by Chen, Levermore and Liu, namely the existence of an entropy extension. We propose here a new stability condition, the reduced stability condition, which is weaker than the previous one, but still has the property to imply the subcharacteristic or interlacing conditions, and the dissipativity of the leading term in the Chapman–Enskog expansion. This reduced stability condition has the advantage of involving only the submanifold of equilibria, or maxwellians, so that it is much easier to check than the entropy extension condition. Our condition generalizes the one introduced by the author in the case of kinetic, i.e. diagonal semilinear relaxation. We provide an adapted stability analysis in the context of approximate Riemann solvers obtained via relaxation systems.

2002 ◽  
Vol 12 (02) ◽  
pp. 155-182 ◽  
Author(s):  
F. ANCONA ◽  
A. MARSON

We analyze a front tracking algorithm for 2×2 systems of conservation laws with non-genuinely nonlinear characteristic fields. The convergence of the corresponding approximate Riemann solvers is established and the basic interaction estimates for the front tracking approximate solutions are provided.


2021 ◽  
Vol 291 ◽  
pp. 110-153
Author(s):  
Shyam Sundar Ghoshal ◽  
Animesh Jana ◽  
Konstantinos Koumatos

2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Elimboto M. Yohana ◽  
Mapundi K. Banda

AbstractA computational investigation of optimal control problems which are constrained by hyperbolic systems of conservation laws is presented. The general framework is to employ the adjoint-based optimization to minimize the cost functional of matching-type between the optimal and the target solution. Extension of the numerical schemes to second-order accuracy for systems for the forward and backward problem are applied. In addition a comparative study of two relaxation approaches as solvers for hyperbolic systems is undertaken. In particular optimal control of the 1-D Riemann problem of Euler equations of gas dynamics is studied. The initial values are used as control parameters. The numerical flow obtained by optimal initial conditions matches accurately with observations.


Sign in / Sign up

Export Citation Format

Share Document