riemann solvers
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 34)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 413 ◽  
pp. 126648
Author(s):  
Dianliang Qiao ◽  
Zhiyang Lin ◽  
Mingmin Guo ◽  
Xiaoxia Yang ◽  
Xiaoyang Li ◽  
...  

Author(s):  
Dinshaw S. Balsara ◽  
Roger Käppeli ◽  
Walter Boscheri ◽  
Michael Dumbser

AbstractSeveral important PDE systems, like magnetohydrodynamics and computational electrodynamics, are known to support involutions where the divergence of a vector field evolves in divergence-free or divergence constraint-preserving fashion. Recently, new classes of PDE systems have emerged for hyperelasticity, compressible multiphase flows, so-called first-order reductions of the Einstein field equations, or a novel first-order hyperbolic reformulation of Schrödinger’s equation, to name a few, where the involution in the PDE supports curl-free or curl constraint-preserving evolution of a vector field. We study the problem of curl constraint-preserving reconstruction as it pertains to the design of mimetic finite volume (FV) WENO-like schemes for PDEs that support a curl-preserving involution. (Some insights into discontinuous Galerkin (DG) schemes are also drawn, though that is not the prime focus of this paper.) This is done for two- and three-dimensional structured mesh problems where we deliver closed form expressions for the reconstruction. The importance of multidimensional Riemann solvers in facilitating the design of such schemes is also documented. In two dimensions, a von Neumann analysis of structure-preserving WENO-like schemes that mimetically satisfy the curl constraints, is also presented. It shows the tremendous value of higher order WENO-like schemes in minimizing dissipation and dispersion for this class of problems. Numerical results are also presented to show that the edge-centered curl-preserving (ECCP) schemes meet their design accuracy. This paper is the first paper that invents non-linearly hybridized curl-preserving reconstruction and integrates it with higher order Godunov philosophy. By its very design, this paper is, therefore, intended to be forward-looking and to set the stage for future work on curl involution-constrained PDEs.


Author(s):  
Feng Qu ◽  
Di Sun ◽  
Qingsong Liu ◽  
Junqiang Bai

2021 ◽  
Vol 88 (3) ◽  
Author(s):  
Alberto Prieto-Arranz ◽  
Luis Ramírez ◽  
Iván Couceiro ◽  
Ignasi Colominas ◽  
Xesús Nogueira

AbstractIn this work, a new discretization of the source term of the shallow water equations with non-flat bottom geometry is proposed to obtain a well-balanced scheme. A Smoothed Particle Hydrodynamics Arbitrary Lagrangian-Eulerian formulation based on Riemann solvers is presented to solve the SWE. Moving-Least Squares approximations are used to compute high-order reconstructions of the numerical fluxes and, stability is achieved using the a posteriori MOOD paradigm. Several benchmark 1D and 2D numerical problems are considered to test and validate the properties and behavior of the presented schemes.


2021 ◽  
pp. 110547
Author(s):  
Kleiton A. Schneider ◽  
José M. Gallardo ◽  
Dinshaw S. Balsara ◽  
Boniface Nkonga ◽  
Carlos Parés

2021 ◽  
Vol 388 ◽  
pp. 125544
Author(s):  
Ernesto Pimentel-García ◽  
Carlos Parés ◽  
Manuel J. Castro ◽  
Julian Koellermeier

Author(s):  
U. Ariunaa ◽  
◽  
M. Dumbser ◽  
Ts. Sarantuya ◽  
◽  
...  

In this paper, complete Riemann solver of Osher-Solomon and the HLLEM Riemann solver for unified first order hyperbolic formulation of continuum mechanics, which describes both of fluid and solid dynamics, are presented. This is the first time that these types of Riemann solvers are applied to such a complex system of governing equations as the GPR model of continuum mechanics. The first order hyperbolic formulation of continuum mechanics recently proposed by Godunov S. K., Peshkov I. M. and Romenski E. I., further denoted as GPR model includes a hyperbolic formulation of heat conduction and an overdetermined system of PDE. Path-conservative schemes are essential in order to give a sense to the non-conservative terms in the weak solution framework since governing PDE system contains non-conservative products, too. New Riemann solvers are implemented and tested successfully, which means it certainly acts better than standard local Lax-Friedrichs-type or Rusanov-type Riemann solvers. Two simple computational examples are presented, but the obtained computational results clearly show that the complete Riemann solvers are less dissipative than the simple Rusanov method that was employed in previous work on the GPR model.


Sign in / Sign up

Export Citation Format

Share Document