Second Order Dehn Functions for Amalgamated Free Products of Groups

2009 ◽  
Vol 16 (04) ◽  
pp. 699-708
Author(s):  
Xiaofeng Wang ◽  
Xiaomin Bao

A finite set of generators for a free product of two groups of type F3with a subgroup amalgamated, and an estimation for the upper bound of the second order Dehn functions of the amalgamated free product are carried out.

2014 ◽  
Vol 25 (03) ◽  
pp. 1450026
Author(s):  
Sören Möller

Let ℳi be a family of II1-factors, containing a common II1-subfactor 𝒩, such that [ℳi : 𝒩] ∈ ℕ0 for all i. Furthermore, let ϕ: ℕ0 → ℂ. We show that if a Hankel matrix related to ϕ is trace-class, then there exists a unique completely bounded map Mϕ on the amalgamated free product of the ℳi with amalgamation over 𝒩, which acts as a radial multiplier. Hereby, we extend a result of Haagerup and the author for radial multipliers on reduced free products of unital C*- and von Neumann algebras.


1976 ◽  
Vol 22 (3) ◽  
pp. 274-281 ◽  
Author(s):  
Daniel E. Cohen

AbstractThe theory of groups acting on trees due to Bass and Serre (1969) is applied to simplify some results of Burns (1972, 1973) giving conditions under which an amalgamated free product or HNN extension has the properties that any finitely generated subgroup containing an infinite subnormal subgroup must have finite index and that the intersection of two finitely generated subgroups is finitely generated.


2007 ◽  
Vol 310 (1) ◽  
pp. 57-69
Author(s):  
N.S. Romanovskii ◽  
John S. Wilson

2005 ◽  
Vol 15 (05n06) ◽  
pp. 869-874 ◽  
Author(s):  
MARTIN R. BRIDSON

We consider the growth functions βΓ(n) of amalgamated free products Γ = A *C B, where A ≅ B are finitely generated, C is free abelian and |A/C| = |A/B| = 2. For every d ∈ ℕ there exist examples with βΓ(n) ≃ nd+1βA(n). There also exist examples with βΓ(n) ≃ en. Similar behavior is exhibited among Dehn functions.


1970 ◽  
Vol 3 (1) ◽  
pp. 85-96 ◽  
Author(s):  
J. L. Dyer

This paper explores a five-lemma situation in the context of a free product of a family of groups with amalgamated subgroups (that is, a colimit of an appropriate diagram in the category of groups). In particular, for two families {Aα}, {Bα} of groups with amalgamated subgroups {Aαβ}, {Bαβ} and free products A, B we assume the existence of homomorphisms Aα → Bα whose restrictions Aαβ → Bαβ are isomorphisms and which induce an isomorphism A → B between the products. We show that the usual five-lemma conclusion is false, in that the morphisms Aα → Bα are in general neither monic nor epic. However, if all Bα → B are monic, Aα → Bα is always epic; and if Aα → A is monic, for all α, then Aα → Bα is an isomorphism.


Author(s):  
Peter Nickolas

AbstractIt is shown that if {Gn: n = 1, 2,…} is a countable family of Hausdorff kω-topological groups with a common closed subgroup A, then the topological amalgamated free product *AGn exists and is a Hausdorff kω-topological group with each Gn as a closed subgroup. A consequence is the theorem of La Martin that epimorphisms in the category of kω-topological groups have dense image.


1966 ◽  
Vol 62 (2) ◽  
pp. 129-134 ◽  
Author(s):  
John Stallengs

The free product A* B of groups A and B can be described in two ways.We can construct the set of reduced words in A and B. Define a binary operation on by concatenating two words and performing as many reductions as possible. Prove that is a group; the difficult step is the proof of associativity. Define A * B = .


1989 ◽  
Vol 40 (2) ◽  
pp. 163-174 ◽  
Author(s):  
Gilbert Baumslag ◽  
Peter B. Shalen

We define a certain class of groups, Ck, which we show to contain the class of all k-free groups. Our main theorem shows that certain amalgamated free products of groups in C3, are again in C3. In the appendix we show that many 3-manifold groups belong to Ck for suitable k.


2006 ◽  
Vol 81 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Valery Bardakov ◽  
Vladimir Tolstykh

AbstractPalindromes are those reduced words of free products of groups that coincide with their reverse words. We prove that a free product of groups G has infinite palindromic width, provided that G is not the free product of two cyclic groups of order two (Theorem 2.4). This means that there is no uniform bound k such that every element of G is a product of at most k palindromes. Earlier, the similar fact was established for non-abelian free groups. The proof of Theorem 2.4 makes use of the ideas by Rhemtulla developed for the study of the widths of verbal subgroups of free products.


Sign in / Sign up

Export Citation Format

Share Document