A Note on Special Local 2-Nilpotent Groups and the Solvability of Finite Groups

2018 ◽  
Vol 25 (04) ◽  
pp. 541-546
Author(s):  
Jiangtao Shi ◽  
Klavdija Kutnar ◽  
Cui Zhang

A finite group G is called a special local 2-nilpotent group if G is not 2-nilpotent, the Sylow 2-subgroup P of G has a section isomorphic to the quaternion group of order 8, [Formula: see text] and NG(P) is 2-nilpotent. In this paper, it is shown that SL2(q), [Formula: see text], is a special local 2-nilpotent group if and only if [Formula: see text], and that GL2(q), [Formula: see text], is a special local 2-nilpotent group if and only if q is odd. Moreover, the solvability of finite groups is also investigated by giving two generalizations of a result from [A note on p-nilpotence and solvability of finite groups, J. Algebra 321 (2009) 1555–1560].

2017 ◽  
Vol 16 (02) ◽  
pp. 1750025 ◽  
Author(s):  
Jinke Hai ◽  
Shengbo Ge ◽  
Weiping He

Let [Formula: see text] be a finite group and let [Formula: see text] be the holomorph of [Formula: see text]. If [Formula: see text] is a finite nilpotent group or a symmetric group [Formula: see text] of degree [Formula: see text], then the normalizer property holds for [Formula: see text].


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


2020 ◽  
Vol 115 (6) ◽  
pp. 599-609
Author(s):  
Rachel D. Camina ◽  
Ainhoa Iñiguez ◽  
Anitha Thillaisundaram

AbstractLet w be a word in k variables. For a finite nilpotent group G, a conjecture of Amit states that $$N_w(1)\ge |G|^{k-1}$$ N w ( 1 ) ≥ | G | k - 1 , where for $$g\in G$$ g ∈ G , the quantity $$N_w(g)$$ N w ( g ) is the number of k-tuples $$(g_1,\ldots ,g_k)\in G^{(k)}$$ ( g 1 , … , g k ) ∈ G ( k ) such that $$w(g_1,\ldots ,g_k)={g}$$ w ( g 1 , … , g k ) = g . Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit’s conjecture, which states that $$N_w(g)\ge |G|^{k-1}$$ N w ( g ) ≥ | G | k - 1 for g a w-value in G, and prove that $$N_w(g)\ge |G|^{k-2}$$ N w ( g ) ≥ | G | k - 2 for finite groups G of odd order and nilpotency class 2. If w is a word in two variables, we further show that the generalized Amit conjecture holds for finite groups G of nilpotency class 2. In addition, we use character theory techniques to confirm the generalized Amit conjecture for finite p-groups (p a prime) with two distinct irreducible character degrees and a particular family of words. Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.


Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi ◽  
Morteza Jafarpour

Let [Formula: see text] be a finite group and [Formula: see text], where [Formula: see text] denotes the order of [Formula: see text]. The function [Formula: see text] was introduced by Tărnăuceanu. In [M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. (2020), https://doi.org/10.1007/s11856-020-2033-9 ], some lower bounds for [Formula: see text] are determined such that if [Formula: see text] is greater than each of them, then [Formula: see text] is cyclic, abelian, nilpotent, supersolvable and solvable. Also, an open problem aroused about finite groups [Formula: see text] such that [Formula: see text] is equal to the amount of each lower bound. In this paper, we give an answer to the equality condition which is a partial answer to the open problem posed by Tărnăuceanu. Also, in [M. Baniasad Azad and B. Khosravi, A criterion for p-nilpotency and p-closedness by the sum of element orders, Commun. Algebra (2020), https://doi.org/10.1080/00927872.2020.1788571 ], it is shown that: If [Formula: see text], where [Formula: see text] is a prime number, then [Formula: see text] and [Formula: see text] is cyclic. As the next result, we show that if [Formula: see text] is not a [Formula: see text]-nilpotent group and [Formula: see text], then [Formula: see text].


Author(s):  
D. H. McLain ◽  
P. Hall

1. If P is any property of groups, then we say that a group G is ‘locally P’ if every finitely generated subgroup of G satisfies P. In this paper we shall be chiefly concerned with the case when P is the property of being nilpotent, and will examine some properties of nilpotent groups which also hold for locally nilpotent groups. Examples of locally nilpotent groups are the locally finite p-groups (groups such that every finite subset is contained in a finite group of order a power of the prime p); indeed, every periodic locally nilpotent group is the direct product of locally finite p-groups.


2019 ◽  
Vol 19 (12) ◽  
pp. 2150001
Author(s):  
Shikun Ou ◽  
Dein Wong ◽  
Hailin Liu ◽  
Fenglei Tian

The inclusion graph of a finite group [Formula: see text], written as [Formula: see text], is defined to be an undirected graph whose vertices are all nontrivial subgroups of [Formula: see text], and two distinct vertices [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. For a graph [Formula: see text] with vertex set [Formula: see text], a set of vertices [Formula: see text] is called a fixing set of [Formula: see text] if the only automorphism of [Formula: see text] that fixes every element in [Formula: see text] is the identity. The fixing number of [Formula: see text] is the smallest size of a fixing set of [Formula: see text]. In this paper, we determine the finite nilpotent groups whose inclusion graphs are planar. Moreover, using the technique of characteristic matrices, we characterize the fixing sets and give the exact value on the fixing number of the inclusion graphs for finite cyclic groups.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350100 ◽  
Author(s):  
GUOHUA QIAN ◽  
YANMING WANG

Let p be a fixed prime, G a finite group and P a Sylow p-subgroup of G. The main results of this paper are as follows: (1) If gcd (p-1, |G|) = 1 and p2 does not divide |xG| for any p′-element x of prime power order, then G is a solvable p-nilpotent group and a Sylow p-subgroup of G/Op(G) is elementary abelian. (2) Suppose that G is p-solvable. If pp-1 does not divide |xG| for any element x of prime power order, then the p-length of G is at most one. (3) Suppose that G is p-solvable. If pp-1 does not divide χ(1) for any χ ∈ Irr (G), then both the p-length and p′-length of G are at most 2.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


1985 ◽  
Vol 32 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Peter Förster

Nilpotent injectors exist in all finite groups.For every Fitting class F of finite groups (see [2]), InjF(G) denotes the set of all H ≤ G such that for each N ⊴ ⊴ G , H ∩ N is an F -maximal subgroup of N (that is, belongs to F and i s maximal among the subgroups of N with this property). Let W and N* denote the Fitting class of all nilpotent and quasi-nilpotent groups, respectively. (For the basic properties of quasi-nilpotent groups, and of the N*-radical F*(G) of a finite group G3 the reader is referred to [5].,X. %13; we shall use these properties without further reference.) Blessenohl and H. Laue have shown in CJ] that for every finite group G, InjN*(G) = {H ≤ G | H ≥ F*(G) N*-maximal in G} is a non-empty conjugacy class of subgroups of G. More recently, Iranzo and Perez-Monasor have verified InjN(G) ≠ Φ for all finite groups G satisfying G = CG(E(G))E(G) (see [6]), and have extended this result to a somewhat larger class M of finite groups C(see [7]). One checks, however, that M does not contain all finite groups; for example, S5 ε M.


2019 ◽  
Vol 22 (5) ◽  
pp. 941-951
Author(s):  
Guohua Qian

Abstract For a given prime p, a finite group G is said to be a {\widetilde{\mathcal{C}}_{p}} -group if every cyclic p-subgroup of G is self-normalizing in its subnormal closure. In this paper, we get some descriptions of {\widetilde{\mathcal{C}}_{p}} -groups, show that the class of {\widetilde{\mathcal{C}}_{p}} -groups is a subgroup-closed formation and that {O^{p^{\prime}}(G)} is a solvable p-nilpotent group for every {\widetilde{\mathcal{C}}_{p}} -group G. We also prove that if a finite group G is a {\widetilde{\mathcal{C}}_{p}} -group for all primes p, then every subgroup of G is self-normalizing in its subnormal closure.


Sign in / Sign up

Export Citation Format

Share Document