Relative Canonical Modules and Some Duality Results

2019 ◽  
Vol 26 (02) ◽  
pp. 351-360 ◽  
Author(s):  
Majid Rahro Zargar

Let (R, m) be a relative Cohen–Macaulay local ring with respect to an ideal a of R and set c to be ht a. We investigate some properties of the Matlis dual of the R-module [Formula: see text], and we show that such modules behave like canonical modules over Cohen–Macaulay local rings. Moreover, we provide some duality and equivalence results with respect to the module [Formula: see text], and these results lead us to achieve generalizations of some known results, such as the local duality theorem, which have been provided over a Cohen–Macaulay local ring admiting a canonical R-module.

2017 ◽  
Vol 10 (03) ◽  
pp. 1750048
Author(s):  
Fatemeh Mohammadi Aghjeh Mashhad

Let [Formula: see text] be a local ring and [Formula: see text] denote the Matlis duality functor. Assume that [Formula: see text] possesses a normalized dualizing complex [Formula: see text] and [Formula: see text] and [Formula: see text] are two homologically bounded complexes of [Formula: see text]-modules with finitely generated homology modules. We will show that if G-dimension of [Formula: see text] and injective dimension of [Formula: see text] are finite, then [Formula: see text] Also, we prove that if Gorenstein injective dimension of [Formula: see text] and projective dimension of [Formula: see text] are finite, then [Formula: see text] These results provide some generalizations of Suzuki’s Duality Theorem and the Herzog–Zamani Duality Theorem.


1979 ◽  
Vol 85 (3) ◽  
pp. 431-437 ◽  
Author(s):  
M. H. Bijan-Zadeh ◽  
R. Y. Sharp

In (11) and (12), a comparatively elementary approach to the use of dualizing complexes in commutative algebra has been developed. Dualizing complexes were introduced by Grothendieck and Hartshorne in (2) for use in algebraic geometry; the approach to dualizing complexes in (11) and (12) differs from that of Grothendieck and Hartshorne in that it avoids use of the concepts of triangulated category, derived category, and localization of categories, and instead places great emphasis on the concept of quasi-isomorphism of complexes of modules over a commutative Noetherian ring.


1969 ◽  
Vol 21 ◽  
pp. 106-135 ◽  
Author(s):  
Norbert H. J. Lacroix

The problem of classifying the normal subgroups of the general linear group over a field was solved in the general case by Dieudonné (see 2 and 3). If we consider the problem over a ring, it is trivial to see that there will be more normal subgroups than in the field case. Klingenberg (4) has investigated the situation over a local ring and has shown that they are classified by certain congruence groups which are determined by the ideals in the ring.Klingenberg's solution roughly goes as follows. To a given ideal , attach certain congruence groups and . Next, assign a certain ideal (called the order) to a given subgroup G. The main result states that if G is normal with order a, then ≧ G ≧ , that is, G satisfies the so-called ladder relation at ; conversely, if G satisfies the ladder relation at , then G is normal and has order .


2018 ◽  
Vol 61 (03) ◽  
pp. 705-725
Author(s):  
DIPANKAR GHOSH ◽  
TONY J. PUTHENPURAKAL

AbstractLet R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set S := R/(f), where f := f1,. . .,fc is an R-regular sequence. Suppose M and N are maximal CM S-modules. It is shown that if ExtSi(M, N) = 0 for some (d + c + 1) consecutive values of i ⩾ 2, then ExtSi(M, N) = 0 for all i ⩾ 1. Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.


Author(s):  
Yinghwa Wu

Throughout, (R, m) will denote a d-dimensional CohenMacaulay (CM for short) local ring having an infinite residue field and I an m-primary ideal in R. Recall that an ideal J I is said to be a reduction of I if Ir+1 = JIr for some r 0, and a reduction J of I is called a minimal reduction of I if J is generated by a system of parameters. The concepts of reduction and minimal reduction were first introduced by Northcott and Rees12. If J is a reduction of I, define the reduction number of I with respect to J, denoted by rj(I), to be min {r 0 Ir+1 = JIr}. The reduction number of I is defined as r(I) = min {rj(I)J is a minimal reduction of I}. The reduction number r(I) is said to be independent if r(I) = rj(I) for every minimal reduction J of I.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750163
Author(s):  
Rasoul Ahangari Maleki

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text] and residue field [Formula: see text]. The linearity defect of a finitely generated [Formula: see text]-module [Formula: see text], which is denoted [Formula: see text], is a numerical measure of how far [Formula: see text] is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether [Formula: see text] implies [Formula: see text], in the case when [Formula: see text].


Author(s):  
Raymond Heitmann

Let R R be a complete local ring and let Q Q be a prime ideal of R R . It is determined precisely which conditions on R R are equivalent to the existence of a complete unramified regular local ring A A and an element g ∈ A − Q g\in A-Q such that R R is a finite A A -module and A g ⟶ R g A_g\longrightarrow R_g is étale . A number of other properties of the possible embeddings A ⟶ R A\longrightarrow R are developed in the process including the determination of precisely which fields can be coefficient fields in the Cohen-Gabber Theorem.


1980 ◽  
Vol 32 (5) ◽  
pp. 1261-1265 ◽  
Author(s):  
Judith D. Sally

There are relatively few classes of local rings (R, m) for which the question of the rationality of the Poincaré serieswhere k = R/m, has been settled. (For an example of a local ring with non-rational Poincaré series see the recent paper by D. Anick, “Construction of loop spaces and local rings whose Poincaré—Betti series are nonrational”, C. R. Acad. Sc. Paris 290 (1980), 729-732.) In this note, we compute the Poincaré series of a certain family of local Cohen-Macaulay rings and obtain, as a corollary, the rationality of the Poincaré series of d-dimensional local Gorenstein rings (R, m) of embedding dimension at least e + d – 3, where e is the multiplicity of R. It follows that local Gorenstein rings of multiplicity at most five have rational Poincaré series.


1966 ◽  
Vol 27 (1) ◽  
pp. 223-230 ◽  
Author(s):  
P. M. Cohn

Many questions about free ideal rings ( = firs, cf. [5] and §2 below) which at present seem difficult become much easier when one restricts attention to local rings. One is then dealing with hereditary local rings, and any such ring is in fact a fir (§2). Our object thus is to describe hereditary local rings. The results on firs in [5] show that such a ring must be a unique factorization domain; in §3 we prove that it must also be rigid (cf. the definition in [3] and §3 below). More precisely, for a semifir R with prime factorization rigidity is necessary and sufficient for R to be a local ring.


1976 ◽  
Vol 28 (5) ◽  
pp. 938-953 ◽  
Author(s):  
C. L. Childress

In this paper we consider the problem of extending the Weierstrass division theorem to quasianalytic local rings of germs of functions of k real variables which properly contain the local ring of germs of analytic functions. After some background material (§ 2) and some technical preliminaries (§ 3), we show by examples that the so-called generic division theorem fails in such rings if k ≧ 1 and that the Weierstrass division theorem fails in such rings if k ≧ 2 (§ 4).


Sign in / Sign up

Export Citation Format

Share Document