Modeling Beam–Solid Finite Element Interfaces: A Stabilized Formulation for Contact and Coupled Systems

2018 ◽  
Vol 10 (09) ◽  
pp. 1850094 ◽  
Author(s):  
Jorge A. Montero ◽  
Ghadir Haikal

A number of engineering applications involve contact with bodies modeled using specialized theories of solid mechanics like beams or shells. While computational models for contact in 2D and 3D solid mechanics have been extensively developed in the literature, problems involving contact with beams or shells have received less attention. When modeling contact between a solid body represented with beam or shell theory and a domain discretized with solid finite elements, the contact model faces the typical challenges of enforcing geometric compatibility and the transfer of a complete pressure field along the contact interface, with the added complications stemming from the different underlying mathematical formulations and finite element discretizations in the connecting domains. Resultant-based beam and shell theories do not provide direct estimates of surface tractions, therefore rendering the issue of pressure transfer on beam–solid and shell–solid interfaces more problematic. In the absence of specialized contact formulations for solid–beam and solid–shell interfaces, contact models have relied almost exclusively on the Node-To-Surface (NTS) geometric compatibility approach. This formulation suffers from well-known drawbacks, including instability, surface locking and incomplete pressure fields on the interface. The NTS approach, however, remains the method most readily applicable to contact with beam or shell elements among the vast variety of available methods for computational contact modeling using finite elements. The goal of this paper is to bridge the gap in the literature on coupling domains with beam and solid finite element discretizations. We propose an interface formulation for beam–solid interfaces that ensures the transfer of a complete pressure field while enforcing geometric compatibility using standard NTS constraints. The formulation uses a stabilization approach, based on a special form of the Discontinuous Galerkin method, to enforce weak continuity between the stress fields on the solid side of the interface, and the moment and shear resultants in the contacting beam. We show that the proposed formulation is a robust approach for satisfying compatibility constraints while ensuring the transfer of a complete pressure field on beam–solid finite element interfaces that can be used with bilinear and quadratic interpolations in the solid, and Euler or Timoshenko formulations for the beam.

2007 ◽  
Vol 15 (03) ◽  
pp. 353-375 ◽  
Author(s):  
TIMOTHY WALSH ◽  
MONICA TORRES

In this paper, weak formulations and finite element discretizations of the governing partial differential equations of three-dimensional nonlinear acoustics in absorbing fluids are presented. The fluid equations are considered in an Eulerian framework, rather than a displacement framework, since in the latter case the corresponding finite element formulations suffer from spurious modes and numerical instabilities. When taken with the governing partial differential equations of a solid body and the continuity conditions, a coupled formulation is derived. The change in solid/fluid interface conditions when going from a linear acoustic fluid to a nonlinear acoustic fluid is demonstrated. Finite element discretizations of the coupled problem are then derived, and verification examples are presented that demonstrate the correctness of the implementations. We demonstrate that the time step size necessary to resolve the wave decreases as steepening occurs. Finally, simulation results are presented on a resonating acoustic cavity, and a coupled elastic/acoustic system consisting of a fluid-filled spherical tank.


Sign in / Sign up

Export Citation Format

Share Document